

Assembly

Hélène Touzet helene.touzet@univ-lille.fr CNRS, Bonsai, CRIStAL

The assembly problem

Courtesy of Ben Langmead (Johns Hopkins University)

Why assembling reads?

- annotation of genomes
 - discovery of new genes
 - gene order, structural variants
 - noncoding regions
 - evolutionnary genomics, phylogenomics
- transcriptome
 - reconstruction of transcripts
 - identification of alternative transcripts
- metagenomics
 - identification of species

The assembly problem

CTAGGCCCTCAATTTTT

GGCGTCTATATCT

CTCTAGGCCCTCAATTTTT

Reconstruct

this

GGCTCTAGGCCCTCATTTTTT

CTCGGCTCTAGGCCCTCATTTTT

TATCTCGACTCTAGGCCCTCA

GGCGTCGATATCT

TATCTCGACTCTAGGCC

GGCGTCTATATCTCG

GGCGTCTATATCTCG

From these

Some assembly is required

How to assemble reads?

Historical perspective

Key features : overlaps between reads

How to assemble reads?

Historical perspective

Key features : overlaps between reads

C T G A G A A C C T G T R_1 C C T G T A A G A T R_2 C T G T A C C T R_3 G A T C T G A R_4

Length of the assembly: 27

Length of the assembly: 26

Length of the assembly: 27

joining together the reads in decreasing order of the quality of their overlaps

Length of the assembly: 26

trying to maximize the total length of read overlaps

Matrix of all possible overlaps

7	R_1	R_2	R_3	R_4
R_1		5	4	0
R_2	0		0	3
R_3	2	3		0
R_4	4	0	0	

Length of the longest suffix of R_i which is also a prefix of R_j

Formalisation as a graph

- Nodes : reads
- Arcs : overlaps between two reads (directed, suffix \rightarrow prefix)
- Weights on the arcs: length of the overlap

7	R_1	R_2	R_3	R_4
R_1		5	4	0
R_2	0		0	3
R_2	2	3		0
R_4	4	0	0	

Assembly

 path that visits every node of the graph exactly once (Hamiltonian path)

Choice of the path

- · Greedy assembly
- Maximal sum of weigths
 Shortest common superstring
- . . .

several paths = several assemblies

Overlap assemblies in real life

- risk of contamination
- existence of sequencing errors
- existence of repeats
- diploid and polyploid genomes
- low coverage or unevent coverage
- + unable to handle the large number of NGS sequencing reads

Sequencing errors

- Approximate overlaps : Construction of alignments between reads
- Assembly : consensus sequence

Repeats

The region A is longer than reads

Diploidy and polyploidy

Read from Mother: TATCTCGACTCTAGGCC

Read from Father: TCTATATCTCGGCTCTAGG

Sequence from Mother: TCTATATCTCGACTCTAGGCC Sequence from Father: TCTATATCTCGGCTCTAGGCC

Coverage

```
CTAGGCCCTCAATTTTT
                CTCTAGGCCCTCAATTTTT
              GGCTCTAGGCCCTCATTTTT
           CTCGGCTCTAGCCCCTCATTTT
        TATCTCGACTCTAGGCCCTCA
        TATCTCGACTCTAGGCC
    TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTCGGCTCTAGGCCCTCATTTTTT
         Coverage = 5
```

CTAGGCCCTCAATTTTT
CTCTAGGCCCTCAATTTTT
GGCTCTAGGCCCTCATTTTTT
CTCGGCTCTAGCCCCTCATTTTT
TATCTCGACTCTAGGCCCTCA
TATCTCGACTCTAGGCC
TCTATATCTCGGCTCTAGG
GGCGTCTATATCTCG
GGCGTCGATATCT
GGCGTCTATATCT
GGCGTCTATATCTT
GGCGTCTATATCTTCGGCCTCTAGGCCCTCATTTTTT

Average coverage = $177 / 35 \approx 5$ -fold

Overlaps - Historical perspectives

- Sanger sequencing
 - Celera (Myers, 2000) originally developed for the assembly of the human genome
 - SGA (Simpson, Durbin, 2012)
- not suitable for NGS short reads (Illumina)
 computationally expensive: construction of the graph, size of the graph, path discovery
- comeback with long reads (Nanopore, Pacbio)

De Bruijn graphs

- introduced in bioinformatics to deal with NGS data
- used by allmost modern short-reads assembly tools seminal: Velvet (2008), Abyss (2009), SOAPdenovo2 (2012) state-of-the art: SPAdes (2012), MaSuRCA (2013), Megahit (2015)...

Genome assembly reborn: recent computational challenges. M. Pop, Briefings in Bioinformatics 2009 https://doi.org/10.1093/bib/bbp026

How to apply de Bruijn graphs to genome assembly. P.E.C. Compeau, P.A. Pevzner, G. Tesler, Nature Biotechnology 2011 doi:10.1038/nbt.2023

Rationale

- The genome can be reconstructed from the k-mers it contains
- Reads are decomposed into k-mers

How many distinct 3-mers are they in

 A A C
 A T C
 G A G
 T A C

 A A G
 C C T G A T
 T C T

 A C C C T G G T A T G A

 A G A G A A T A A T G T

De Bruijn Graph

- Nodes: k-mers present in the reads
- Arcs : overlaps of length k-1 between k-mers Do not depend on the set of reads
- Easy to construct, low memory footprint Great advantage over overlap graphs

Assembly = path in the graph

Several paths = several assemblies

De Bruijn Graphs in practice - choice of k

Length of k-mers

- small *k* :
 - pro : more non-erroneous k-mers
 - cons : less signal, more random overlaps, repeat collapsing
- large k :
 - pro: higher signal, less random overlaps, less repeat collapsing
 - cons : more erroneous k-mers
- generally $k \ge 20$ (may be longer for large genomes)
- higher sequencing coverage means larger k values can be used
- multi-k assembly ($k=21 \rightarrow k=55 \rightarrow k=72$) IDBA, SPAdes, Megahit

In this lecture: SPAdes

De Bruijn Graphs in practice - cleaning *k*-mers

Courtesy of Rayan Chikhi (Institut Pasteur) horizontal axis: number of occurrences vertical axis: number of k-mers

- *k*-mers with low frequency are likely to contain sequencing errors
- remove k-mers with too few occurrences before the construction of the graph
- k-mer counting: Jellyfish, Kmergenie, DSK

De Bruijn Graphs in practice - contigs and scaffolds

Contigs = simple paths in the graph

 $\mbox{Scaffold} = \mbox{link between contigs using paired-end reads} \\ \mbox{Error-prone}$

Short read assembly is still difficult

even with De Bruijn graphs

- risk of contamination
- existence of sequencing errors solved
- existence of repeats
- diploid and polyploid genomes
- low coverage or unevent coverage
- + unable to handle the large number of NGS sequencing reads solved

Short read assembly is still a difficult

- library design
 - longest read lengths
 - coverage \geq 50x, x ploidy number
 - for 1 bacterial genome, no point going above 200x
 - BROAD recipe : several mate pairs libraries of increasing size
- assembler
 - SPAdes for small genomes
 - unclear for large genomes
 - try at least two assemblers, try different parameters
 - high computational requirements overall
- an assembly is not the absolute truth, it is a mostly complete, generally fragmented and mostly accurate hypothesis

How to compare/analyse assemblies?

- no trivial ranking between assemblies
- no simple criteria
- assembly with high coverage and short contigs / assembly with low coverage and long contigs

Quast

Quality Assessment Tool for Genome Assemblies

- provides a large number of statistics and metrics : contigs, missamblies, functional elements
- works both with and without a reference genome
- · accepts multiple assemblies, thus is suitable for comparison

QUAST : quality assessment tool for genome assemblies. Bioinformatics 2013 https://doi.org/10.1093/bioinformatics/btt086

Contigs

- · number of contigs
- length of the largest contig
- total number of bases in the assembly (sum of contig lengths)

- N50 : contig length N for which 50% of all bases in the sequences are in a contig of length $L \ge N$
- *NG*50 : contig length such that using equal or longer length contigs produces 50% of the expected length of the reference genome

Miassemblies (requires a reference genome)

- missassembly breakpoints: position in the contig where the left flanking sequence aligns over 1 kb away from the right flanking sequence on the reference, or they overlap >1 kb, or align on opposite strands or different chromosomes:
- metrics: total number of missambly breakpoints, number of contigs that contain misassembly breakpoints, number of bases contained in all contigs that have one or more misassemblies (Mummer)
- number of unaligned contigs : contigs that have no alignment to the reference sequence
- number of ambiguously mapped contigs: contigs that have multiple alignments to the reference genome

Functional elements

- genome fraction (%): number of aligned bases in the reference, divided by the genome size.
- duplication ratio: number of aligned bases in the assembly divided by the number of aligned bases in the reference
- number of mismatches and number of indels per 100 kb
- number of genes based on a user-provided annotated list of gene positions in the reference genome
- number of predicted genes in the assembly (GeneMark.hmm for prokaryotes and GlimmerHMM for eukaryotes)

Bandage

Bioinformatics Application for Navigating De novo Assembly Graphs Easily

- interactive visualization of the assembly graph (such as de Bruijn graph)
- enables BLAST searches

Left: ideal bacterial assembly with one single contig Right: poor assembly with many short contigs

Bandage: interactive visualization of de novo genome assemblies, Bioinformatics 2015 https://doi.org/10.1093/bioinformatics/btv383

 ${\bf Left: Repeated\ sequences: single\ nodes\ with\ multiple\ inputs\ and\ outputs}$ ${\bf Right,\ underlying\ gene\ structure\ deduced\ from\ Bandage\ visualization}$

16S rRNA regions of a bacterial genome assembly graph (found in the graph with Blast)