Prédiction de gènes

Hélène Touzet helene.touzet@univ-lille.fr CNRS, Bonsai, CRIStAL

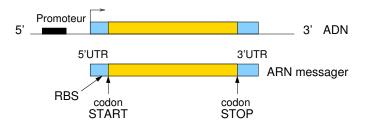
Décoder le génome: prédiction des gènes

- première étape pour interpréter un génome nouvellement séquencé
 - distinction entre régions codantes et non codantes
 - identification des protéines
- réalisée par des programmes informatiques combinant différents types d'informations
 - possibilité de faux négatifs gènes qui échappentà la détection
 - possiblité de faux positifs certains gènes prédits ne correspondent pasà de vrais gènes
 - les bornes du gène sont parfois erronées

Prédiction de gènes, trois grandes approches

- prédiction par homologie
- prédiction ab initio, sans connaissance préalable
- prédiction à partir de données de séquençage de transcriptome EST, RNA-Seq

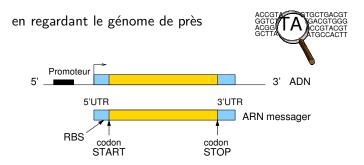
Génomes procaryotes


Génomes procaryotes

- plus de 80% du génome est codant
 - séquences intergéniques courtes
 - en moyenne : un gène pour 1 000 nucléotides
- structure des gènes simple
 - régions transcrites mais non traduites (3' et 5' UTR) courtes
 - pas d'intron (sauf exception)

Prédiction par homologie

- comparaison avec un génome proche
 - annotation d'une nouvelle souche pour une bactérie connue
 - conservation du contenu en gènes, avec possiblement des mutations ponctuelles au sein des gènes et des remaniements chromosomiques
 - BlastN, mauve, MUMmer
- recherche des régions pouvant coder pour des protéines orthologues
 - comparaison inter-espèces
 - traduction du génome suivant les 6 cadres de lectures puis comparaison à une base de données de protéines
 - BlastX


Prédiction ab initio : structure d'un gène procaryote

UTR : *UnTranslated Region* région non traduite lors de la synthèse protéique

RBS : Ribosome Binding Site site de fixation du ribosome à l'ARN messager lors de la traduction

Comment localiser les gènes ?

- signaux ADN promoteur, RBS codons START et STOP
- composition en codons de la région codante table d'usage des codons

Comment localiser les gènes ?

- signaux ADN promoteur, RBS → peu informatifs codons START et STOP
- composition en codons de la région codante table d'usage des codons

À la recherche des codons START et STOP

- ORF (Open Reading Frame) : région génomique
 - commençant par un codon START ATG, CTG ou TTG
 - terminant par un codon STOP dans la même phase TAA, TGA ou TAG
 - ne contenant pas de codon STOP dans la même phase entre les deux
- longueur moyenne d'un ORF, par hasard : environ 20 acides aminés (loi géométrique)
 - Les ORF de grande longueur sont rarement dus au hasard.
- https://www.ncbi.nlm.nih.gov/orffinder

Entre les codons START et STOP

- existence d'un biais statistique au sein des CDS (Coding Sequences)
- code génétique: 20 acides aminés, $4 \times 4 \times 4 = 64$ codons
- redondance du code génétique
 - plusieurs choix de codons sont possibles pour coder un acide aminé
 - biais d'usage du code ce choix n'est pas équiprobable au sein d'une espèce il varie suivant les espèces

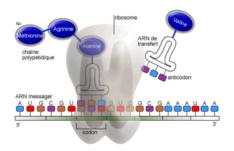
		Deuxième lettre							ijk		
		U		C		А		G			
Première lettre (côté 5')	U	UUU UUC UUA UUG	Phe Phe Leu Leu	UCU UCC UCA UCG	Ser Ser Ser	UAU UAC UAA UAG	Tyr Tyr Stop Stop	UGU UGC UGA UGG	Cys Cys Stop Trp	U C A G	
	С	CUU CUC CUA CUG	Leu Leu Leu Leu	CCU CCC CCA CCG	Pro Pro Pro	CAU CAC CAA CAG	His His Gln Gln	CGU CGC CGA CGG	Arg Arg Arg Arg	U C A G	Troisième lettre
	Α	AUU AUC AUA AUG	Ile Ile Ile Met	ACU ACC ACA ACG	Thr Thr Thr Thr	AAU AAC AAA AAG	Asn Asn Lys Lys	AGU AGC AGA AGG	Ser Ser Arg Arg	U C A G	ettre (côté 3')
	G	GUU GUC GUA GUG	Val Val Val Val	GCU GCC GCA GCG	Ala Ala Ala Ala	GAU GAC GAA GAG	Asp Asp Glu Glu	GGU GGC GGA GGG	Gly Gly Gly Gly	U C A G	
		codon d'initiation codon de terminaison									

Table d'usage des codons pour la bactérie E. coli

AAA 3.5 1.3	CAA 1.3 1.4	GAA 4.3 1.6	TAA * *
AAG 1.1 1.6	CAG 3.0 1.7	GAG 1.8 1.8	TAG * *
AAC 2.4 1.4	CAC 1.1 1.5	GAC 2.2 1.7	TAC 1.4 1.4
AAT 1.4 1.3	CAT 12 14	GAT 3.2 1.5	TAT 1.5 1.3
AGA 0.1 1.6	CGA 0.3 1.7	GGA 0.6 1.8	TGA * *
AGG 0.1 1.8	CGG 0.4 2.0	GGG 1.0 2.2	TGG 1.4 1.8
AGC 1.6 1.7	CGC 2.4 1.8	GGC 3.2 2.0	TGC 0.7 1.6
AGT 0.7 1.5	CGT 2.5 1.6	GGT 2.8 1.8	TGT 0.5 1.5
ACA 0.5 1.4	CCA 0.8 1.5	GCA 2.0 1.7	TCA 0.6 1.4
ACG 1.4 1.7	CCG 2.6 1.8	GCG 3.6 2.0	TCG 0.8 1.6
ACC 2.5 1.5	CCC 0.4 1.6	GCC 2.5 1.8	TCC 0.9 1.5
ACT 0.9 1.4	CCT 0.6 1.5	GCT 1.6 1.6	TCT 0.9 1.4
ATA 0.3 1.3	CTA 0.3 1.4	GTA 1.1 1.5	TTA 1.1 1.3
ATG 2.5 1.5	CTG 5.7 1.6	GTG 2.7 1.8	TTG 1.2 1.5
ATC 2.7 1.4	CTC 1.0 1.5	GTC 1.5 1.6	TTC 1.8 1.4
ATT 2.8 1.3	CTT 0.9 1.4	GTT 1.9 1.5	TTT 1.9 1.2

1ère colonne: codon

2^{ème} colonne: fréquence observée (gènes connus)


3^{ème} colonne: fréquence théorique (modèle de base)

Exemples d'usage des codons Sérine dans différents organismes

Codon	E.coli	D.melanogaster	H.sapiens	S.cerevisiae	
AGT	3	1	10	5	
AGC	20	23	34	4	
TCG	4	17	9	1	
TCA	2	2	5	6	
TCT	34	9	13	52	
TCC	37	48	28	33	

(fréquences arrondies – souce: D. Gautheret)

- hypothèse neutraliste : résulte d'un biais mutationnel. La probabilité de mutation d'une base nucléique vers une autre varie en fonction des bases considérées, et cela se reflète dans les codons
- hypothèse sélectionniste : optimisation de l'efficacité de la traduction. Les codons préférés sont ceux pour lesquels les ARN de transfert sont les plus fréquents dans le génome

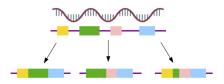
Exemple de logiciel: GeneMark.hmm

- suite d'outils développée depuis 1998 par le Georgia Institute of Technology
 - version procaryote
 - version eucaryote
- utilisée pour annoter le génome d'Haemophilus influenzae
- hmm: modélisation statistique à base de Modèles de Markov cachés (Hidden Markov models)
- https://exon.gatech.edu/GeneMark

Prédiction chez les procaryotes : quelques pièges

- plusieurs codons START possibles
 - présence de RBS
 - comparaison de séquence
- événements rares ou difficiles à identifier
 - transferts horizontaux (sauf si homologie)
 - décalage de phase de lecture
 - gènes chevauchants ou en anti-sens
 - (gènes non codants)

Génomes eucaryotes



Complexité des génomes eucaryotes

- structure complexe des génomes
 - faible pourcentage de séquences codant pour des protéines (environ 2% du génome humain)
 - présence de répétititions
 - présence de pseudo-gènes
- structure complexe des gènes
 - longues régions 3' et 5' non traduites (exons non codants)
 - alternance d'introns et d'exons

Les introns et les exons

- taille des introns non multiple de 3 un intron peut couper un codon en deux \to changement de phase d'un exonà l'autre
- existence d'exons courts (\sim 10nt)
- existence d'introns très longs (plus longs que les exons)
- signal d'épissage faible (sites donneurs et accepteurs)
- epissage alternatif (plus de 70% des gènes humain)

Analyse en deux temps

- localisation des ARN messagers
- étude des bornes des gènes: site d'initiation de la transcription, codon START, structure exonique

Exercice

- annotation du génome miniature de Staphylococcus aureus
- recherche d'ORF avec ORFfinder https://www.ncbi.nlm.nih.gov/orffinder
- Comparaison des ORF trouvées avec des banques de proétéines avec BlastX https://blast.ncbi.nlm.nih.gov
- Prédiction de gènes avec Genemark.hmm https://exon.gatech.edu/GeneMark

