

« High-throughput sequencing data analysis» cycle Unit 5/5: RNA-seq analysis

Oct. 3rd, 4rth, 5th, & 6th, 2023

Pierre Pericard - Sarah Guinchard Bilille platform - PLBS

pierre.pericard@univ-lille.fr

Unit 5/5: RNA-seq analyses

- **Day 1: Prerequisites for NGS** (Pierre Pericard, Sarah Guinchard)
 - Introduction to Galaxy
 - Next Generation Sequencing (NGS)
 - Quality control, cleaning and preprocessing
 - Mapping on a reference genome

• Day 2 & 3: RNA-seq Bioinfo (Camille Marchet, P. Pericard, S. Guinchard)

- With reference RNA-seq
- De-novo RNA-seq
- Introduction to 3rd generation sequencing (long reads)
- Day 4: RNA-seq Biostats (Pierre Pericard, Estelle Chatelain)
 - Data exploration (descriptive stats, PCA, clustering, ...)
 - Differentially expressed genes analysis (DEG)
 - Enrichment analyses: over-representation (ORA), ranking tests (GSEA)

Day 1: Bases of NGS analyses for RNA-seq

Morning

• Lectures

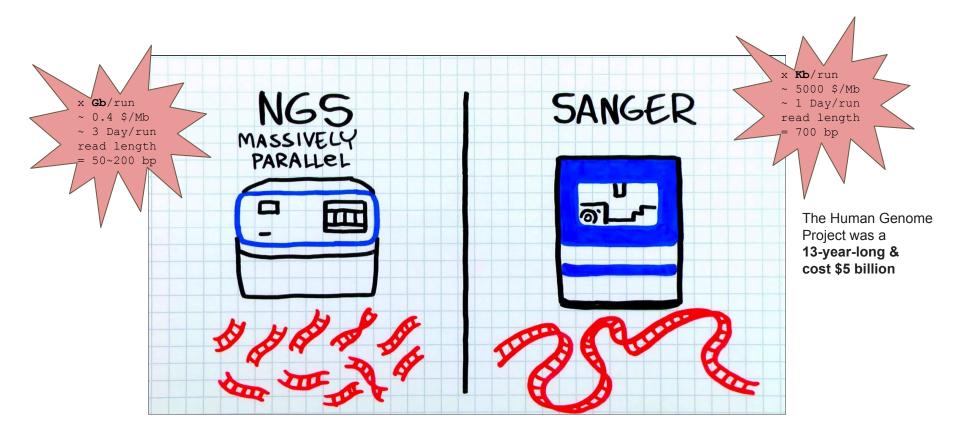
- Introduction to NGS
- Reads Quality Control + Cleaning
- FastQC + MultiQC + cleaning practical

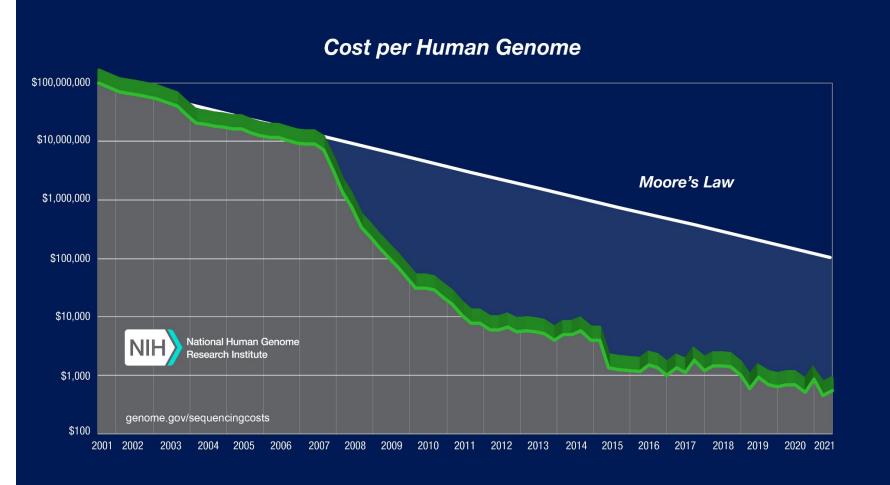
https://training.galaxyproject.org/training-material/topics/sequence-analysis/tutorials/quality-control/tutorial.html

Lunch break

Afternoon

- Lectures
 - Reads mapping on reference
 - Reads duplicates
- Mapping practical


https://training.galaxyproject.org/training-material/topics/sequence-analysis/tutorials/mapping/tutorial.html


Day 1: Bases of NGS analyses for RNA-seq

NGS Introduction

- → What is NGS?
- → Sequencers
- → Applications
- → NGS workflow
- → Output data

"Next-generation sequencing (NGS), also known as high-throughput sequencing, is the catch-all term used to describe a number of different modern sequencing technologies. These technologies allow for sequencing of DNA and RNA much more quickly and cheaply than the previously used Sanger sequencing, and as such revolutionised the study of genomics and molecular biology"

Illumina sequencing

Illumina sequencing works by simultaneously identifying DNA bases, as each base emits a unique fluorescent signal, and adding them to a nucleic acid chain

Ion Torrent: Proton / PGM sequencing (thermofisher)

Ion Torrent sequencing measures the direct release of H+ (protons) from the incorporation of individual bases by DNA polymerase and therefore differs from the previous two methods as it does not measure light.

Illumina sequencing

Illumina sequencing works by simultaneously identifying DNA bases, as each base emits a unique fluorescent signal, and adding them to a nucleic acid chain

Ion Torrent: Proton / PGM sequencing (thermofisher)

Ion Torrent sequencing measures the direct release of H+ (protons) from the incorporation of individual bases by DNA polymerase and therefore differs from the previous two methods as it does not measure light.

MGI sequencing (BGI group)

8

Sequencers – Illumina

illumina®

Benchtop Sequencers			Production-Scale Sequencers				
	iSeq 100	MiniSeq	MiSeq Series O	NextSeq 550 Series O	NextSeq 1000 & 2000		
Popular Applications & Methods	Key Application	Key Application	Key Application	Key Application	Key Application		
Large Whole-Genome Sequencing (human, plant, animal)							
Small Whole-Genome Sequencing (microbe, virus)	•	•	٠	•	•		
Exome & Large Panel Sequencing (enrichment-based)				•	•		
Targeted Gene Sequencing (amplicon- based, gene panel)	•	•	•	•	•		
Single-Cell Profiling (scRNA-Seq, scDNA-Seq, oligo tagging assays)				•	•		
Transcriptome Sequencing (total RNA- Seq, mRNA-Seq, gene expression profiling)				•	•		
Targeted Gene Expression Profiling	•	•	•	•	٠		
miRNA & Small RNA Analysis	•	۲	•	•	•		
DNA-Protein Interaction Analysis (ChIP- Seq)			•	•	•		
Methylation Sequencing				•	•		
16S Metagenomic Sequencing		•	•	•	•		
Metagenomic Profiling (shotgun metagenomics, metatranscriptomics)				•	•		
Cell-Free Sequencing & Liquid Biopsy Analysis				•	•		
Run Time	9.5–19 hrs	4-24 hours	4-55 hours	12-30 hours	11-48 hours		
Maximum Output	1.2 Gb	7.5 Gb	15 Gb	120 Gb	330 Gb*		
Maximum Reads Per Run	4 million	25 million	25 million [†]	400 million	1.1 billion*		
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 300 bp	2 × 150 bp	2 × 150 bp		

Sequencers – Illumina Benchtop Sequencers

NovaSeq 6000

NovaSeq X Series

Popular Applications & Methods	Key Application	Key Application	Key Application
Large Whole-Genome Sequencing (human, plant, animal)		•	•
Small Whole-Genome Sequencing (microbe, virus)	•	•	•
Exome & Large Panel Sequencing (enrichment-based)	•	•	•
Targeted Gene Sequencing (amplicon-based, gene panel)	•	•	•
Single-Cell Profiling (scRNA-Seq, scDNA-Seq, oligo tagging assays)	•	•	•
Transcriptome Sequencing (total RNA-Seq, mRNA-Seq, gene expression profiling)	•	•	•
Chromatin Analysis (ATAC-Seq, ChIP-Seq)	•	•	•
Methylation Sequencing	•	•	•
Metagenomic Profiling (shotgun metagenomics, metatranscriptomics)	•	•	•
Cell-Free Sequencing & Liquid Biopsy Analysis	•	•	•
Run Time	11-48 hours	~13–38 hours (dual SP flow cells) ~13–25 hours (dual S1 flow cells) ~16–36 hours (dual S2 flow cells) ~44 hours (dual S4 flow cells)	~13–21 hours (1.5B flow cells [‡] ~18–24 hours (10B flow cells [‡] ~48 hours (25B flow cells [‡])
Maximum Output	360 Gb *	6000 Gb	16 Tb
Maximum Reads Per Run	1.2 billion *	20 billion	26 billion (single flow cells) 52 billion (dual flow cells)
Maximum Read Length	2 × 150 bp	2 × 250 bp**	2 × 150 bp

Sequencers – Illumina (pre-2020)

illumina®

NextSeq Series O

HiSeq Series O

HiSeq X Series[‡]

NovaSeq 6000 System

Popular Applications & Methods	Key Application	Key Application	Key Application	Key Application
Large Whole-Genome Sequencing (human, plant, animal)	•	٠	•	•
Small Whole-Genome Sequencing (microbe, virus)	•	٠		٠
Exome Sequencing	•	•		٠
Targeted Gene Sequencing (amplicon, gene panel)	•	٠		٠
Whole-Transcriptome Sequencing	•	•		٠
Gene Expression Profiling with mRNA-Seq	•	٠		٠
miRNA & Small RNA Analysis	•	٠		٠
DNA-Protein Interaction Analysis	•	٠		٠
Methylation Sequencing	•	•		٠
Shotgun Metagenomics	•			•

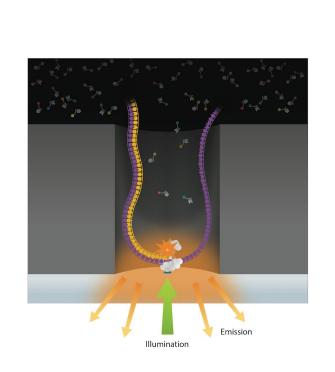
Optimized NGS Sample Tracking and Workflows

See how BaseSpace Clarity LIMS (Laboratory Information Management System) enabled this large genomics lab to standardize lab procedures and cope with increasing sample volumes from diverse clients.

Read Case Study >

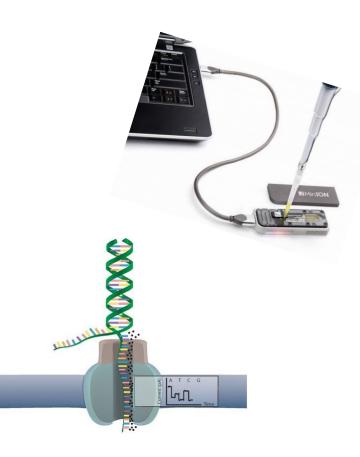
Run Time	12-30 hours	< 1–3.5 days (HiSeq 3000/HiSeq 4000) 7 hours–6 days (HiSeq 2500)	< 3 days	16–36 hours (Dual S2 flow cells) 44 hours (Dual S2 flow cells)
Maximum Output	120 Gb	1500 Gb	1800 Gb	6000 Gb [§]
Maximum Reads Per Run	400 million	5 billion	6 billion	20 billion**
Maximum Read Length	2 × 150 bp	2 × 150 bp	2 × 150 bp	2 × 150 bp

Thermo Fisher SCIENTIFIC


Sequencers – Thermo Fisher Scientific

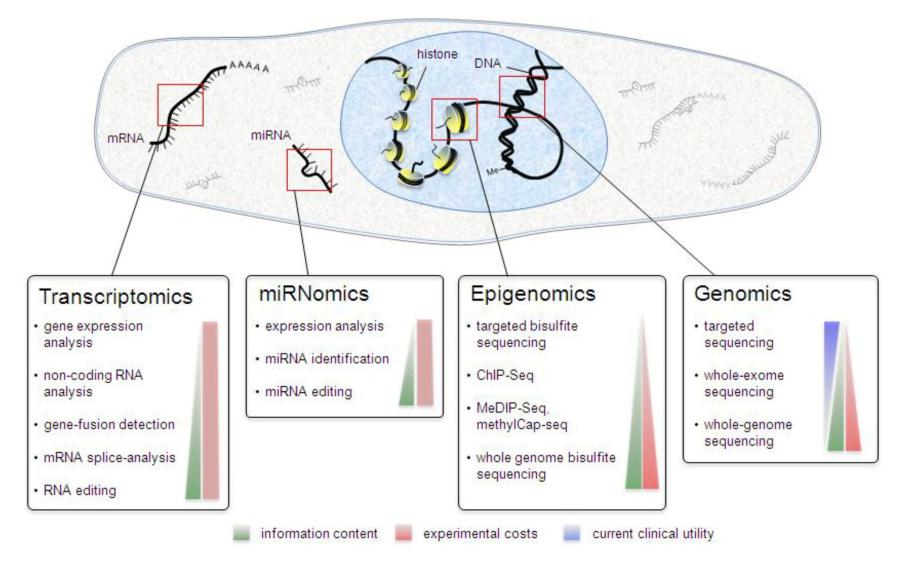
Plateformes de séquençage	····· For		
	Système Ion PGM™ pour le séquençage de nouvelle génération	Système Ion S5™ pour le séquençage de nouvelle génération	Système Ion S5™ XL pour le séquençage de nouvelle génération
Avantages	Évolutivité : de 30 Mo à 2 Go Rapidité : séquençage exécuté en 2 à	Simplicité : solutions de flux de travaux automatisé, de la préparation des échantillons à l'analyse	Simplicité : solutions de flu de travaux automatisé, de l préparation des échantillon à l'analyse
	7 heures, selon la longueur de lecture et la sortie par la puce	Évolutivité : de 600 Mo à 15 Go	Évolutivité : de 600 Mo à 15 Go
		Rapidité : séquençage effectué en 2,5 à 4 heures (quelle que soit la sortie par la puce)	Rapidité : de l'ADN aux données en 24 heures
Applications de	ARN ciblé	ARN ciblé	ARN ciblé
séquençage	ADN ciblé	ADN ciblé	ADN ciblé
	Microbien	Microbien	Microbien
		Transcriptome	Transcriptome
		Exome	Exome
		Séquençage de l'ARN	Séquençage de l'ARN

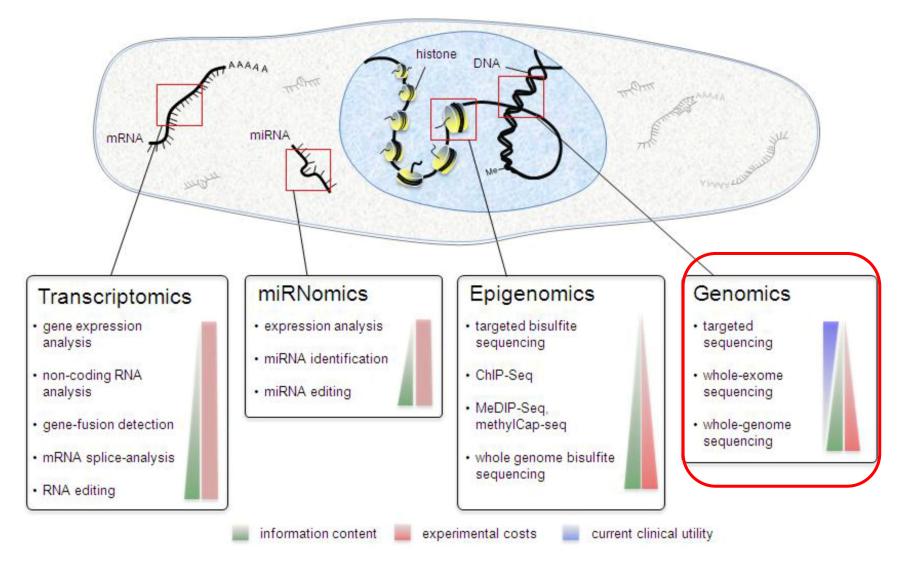
Sequencers - MGI (BGI group)


	Sequencers 🕂	Sequencers 🕂	Sequencers 🕂	Sequencers 🕂	Sequencers 🕂	Sequencers 🕕	Sequencers 😝
Product Model	DNBSEQ-T7	DNBSEQ-T7* For HotMPS Only	DNBSEQ-G400	DNBSEQ-G400* For HotMPS Only	DNBSEQ-G400C*	DNBSEQ-G99	DNBSEQ-G50
Features	Ultra-high Throughput	Ultra-high Throughput	Adaptive	Adaptive	Adaptive	Fast	Effective
Applications	Whole Genome Sequencing, Deep Exome Sequencing, Transcriptome Sequencing, and Targeted Panel Projects.	Whole Genome Sequencing, Deep Exome Sequencing, Transcriptome Sequencing, and Targeted Panel Projects.	WGS, WES, Transcriptome sequencing, etc.	WGS, WES, Transcriptome sequencing, etc.	Small RNA,Pathogen Fast Identification etc.	Targeted oncology panel sequencing, infectious disease sequencing, oncology methylation sequencing, small whole- genome sequencing	Small whole genome sequencing, targeted DNA/RNA panels, low-pass whole genome sequencing
Flow Cell Type	FC	FC	FCL & FCS	FCL	FCL	FC	FCL & FCS
Lane/Flow Cell++	1 lane	1 lane	2 or 4 lanes	4 lanes	4 lanes	1 lane	1 lane
Operation Mode	Ultra-high Throughput	Ultra-high Throughput	High Throughput	High Throughput	High Throughput	Small and Medium Throughput	Medium Throughput
Max. Throughput / RUN	6Tb	4Tb	1440Gb	720Gb	360G	48Gb	150Gb
Effective Reads / Flow Cell	5000M	5000M	300M/550M/1500-1800M	1500-1800M	1500-1800M	80M	500M / 100M
Average run time	24~30 hours for PE150 sequencing	20~22 hrs for PE100 sequencing	FCS: 13~37 hours FCL: 14~109 hours	15.5-50.5 hours	17/30 hours	12 hours (PE150)	9~40 hours
Min. Read Length	PE100	PE100	SE50	SE50	SE50	SE100	SE50
Max. Read Length	PE150	PE100	PE300	PE100	SE100	PE150	PE150

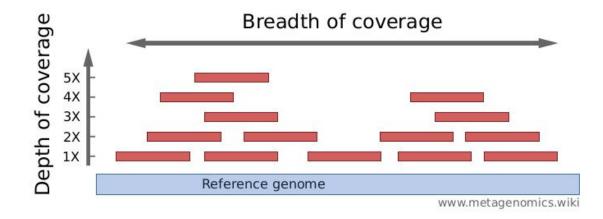
A MGI 华大智造

PacBio Sequencing


Third-generation sequencing


Nanopore technology (ONT)

- much longer reads (> Kb)
- error rate (~ 1-10 %)

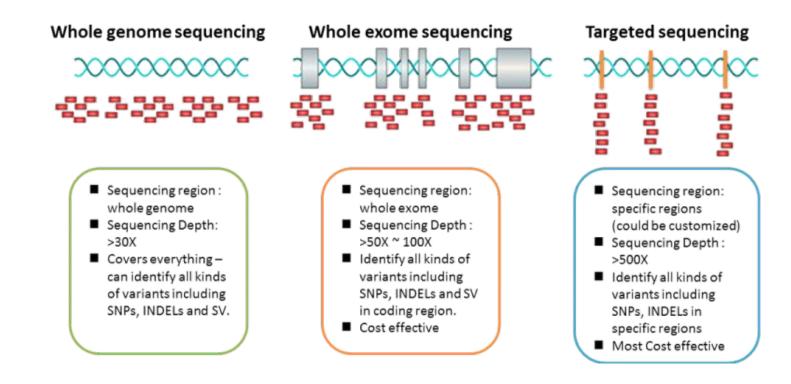


Unit of the sequencing output: the reads

- Result of a sequencing reading
- Short sequences (generally 100-200 bp)
- Includes an identifier that can contain various metadata (fasta, fastq)
- One sequencing run \rightarrow millions of reads
- In text format, bases written as A, T, C, G or N (unknown)
- Can include quality information for each base (fastq)
- Stay tuned for more details

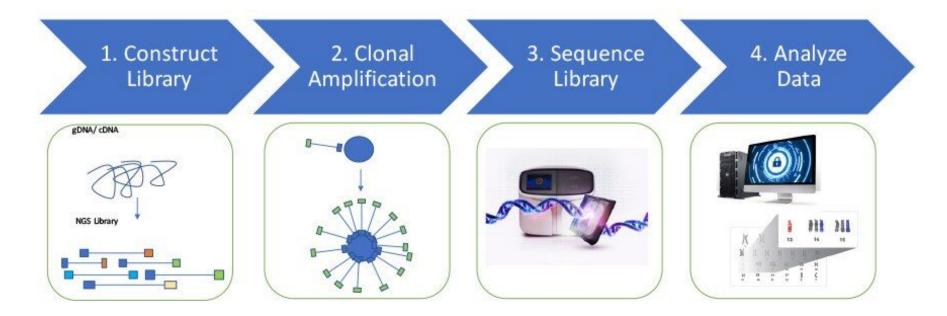
Coverage and depth of coverage

- > Depth of coverage (at one position) = number of reads covering that position
- Average depth of coverage = average number of reads covering a base (X)
 - Example: 30X for normal sample, 100X for tumor sample
- > (Breadth of) Coverage = percentage of the targeted regions covered by at least X read
 - For example: 90% of a genome is covered at 1X depth; and still 40% is covered at 4X depth.

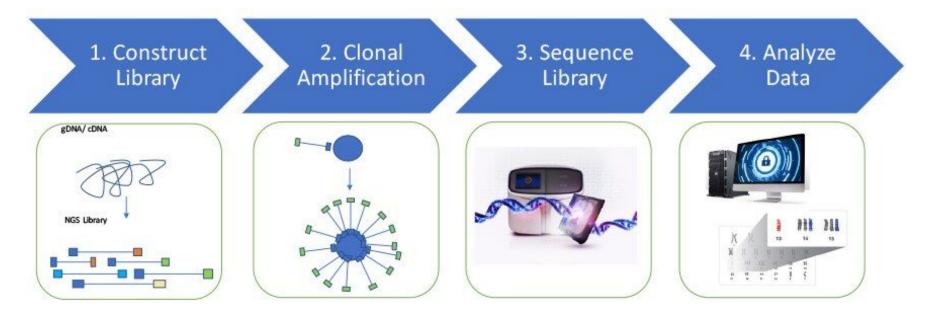


Source :

- Élodie Girard, 5ème Ecole de bioinformatique AVIESAN-IFB 2016, http://www.france-bioinformatique.fr/sites/default/files/V01_ITMO_2016_EG_from_fastq_to_mapping_1.pdf


- http://www.metagenomics.wiki/pdf/definition/coverage-read-depth

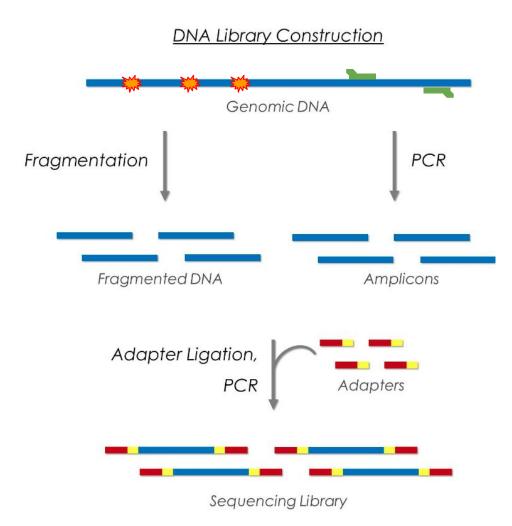
Applications : genomics (DNA-seq)



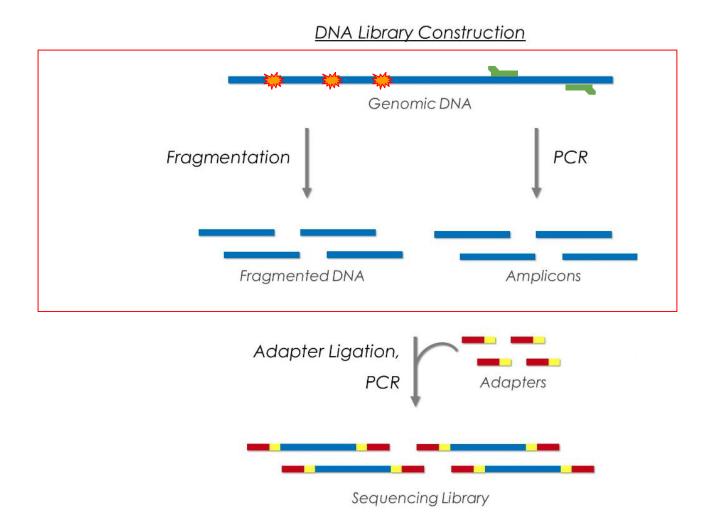
- Targeted sequencing : rapid and cost-effective way to detect known and novel variants in selected sets of genes or genomic regions
- Whole exome sequencing : sequencing all of the protein-coding regions of genes in a genome (applications : discover rare-variants, adjacent splice-sites,...)
- Whole genome sequencing : alterations in regulatory sequences and non-coding regions, chromosomal rearrangements,

NGS workflow

NGS workflow

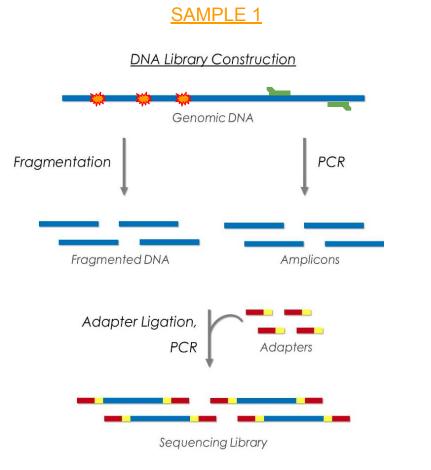


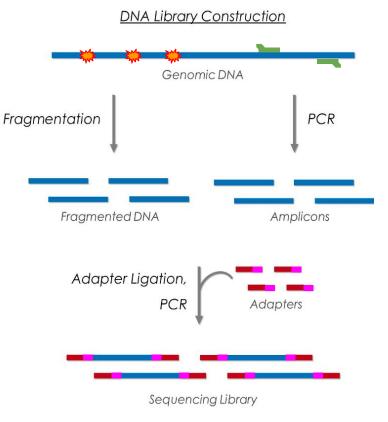
21


Library construction

A sequencing "library" must be created from the sample. The DNA (or cDNA) sample is processed into relatively short double-stranded fragments (100–800 bp)

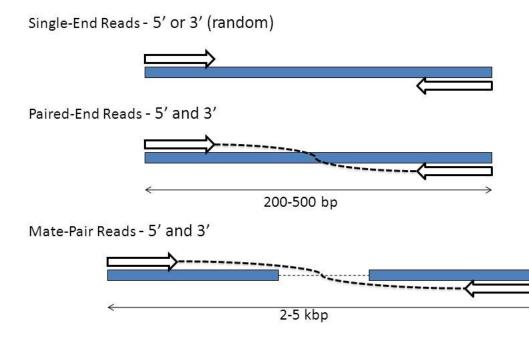
Library construction


A sequencing "library" must be created from the sample. The DNA (or cDNA) sample is processed into relatively short double-stranded fragments (100–800 bp)


source : https://www.biocompare.com/Molecular-Biology/9187-Next-Generation-Sequencing/

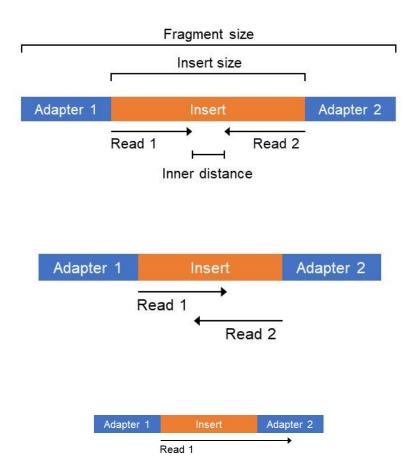
Library construction

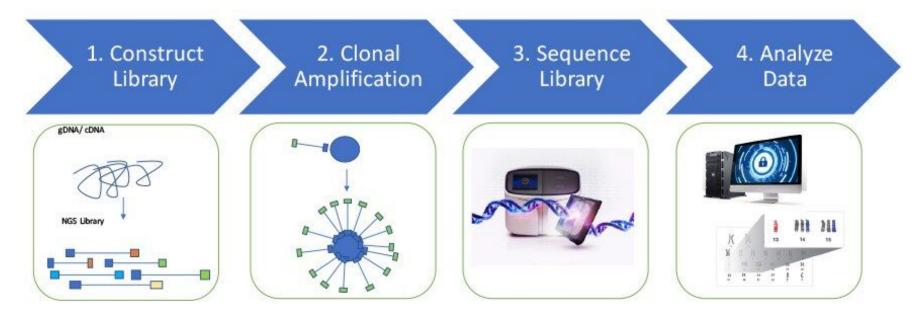
Multiplex sequencing using DNA barcoding



SAMPLE 2

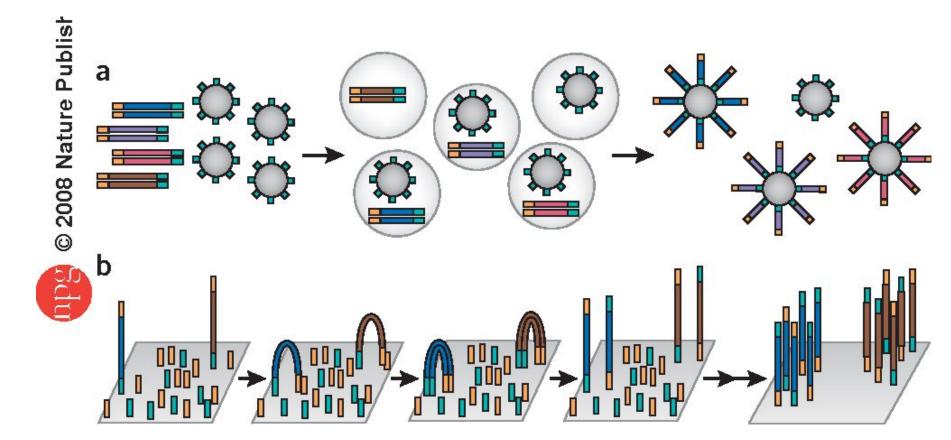
Single-end vs paired-end

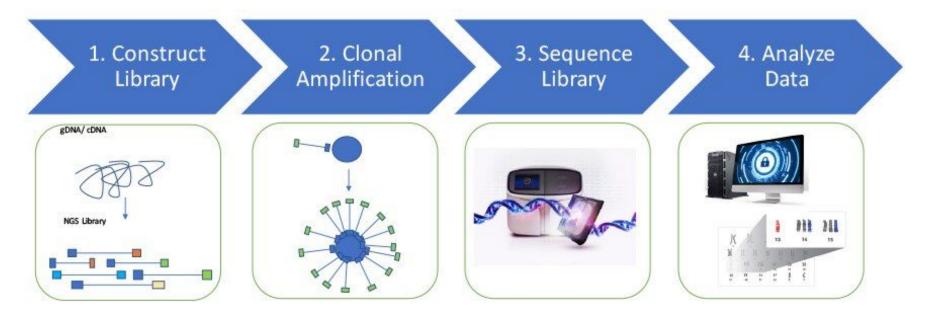

- Single-End Read: When sequencing process only occurs in 1 direction
- > **Paired-End Read:** When sequencing process occurs in both directions
- Mate-pair Read: Short fragments consisting of two segments that originally had a separation of several kilobases in the genome.


source: http://slideplayer.com/slide/7847747/25/images/7/Types+of+Sequencing+Libraries.jpg

Paired-end

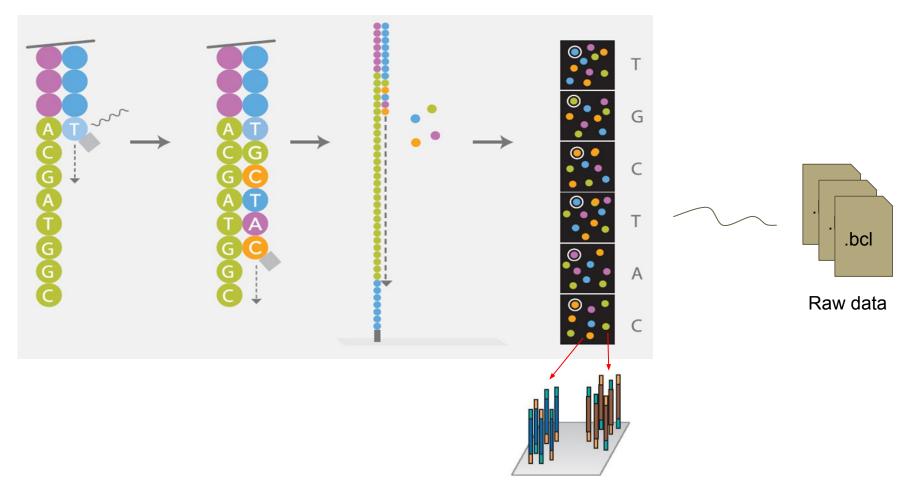
> **The insert size** is the size of the piece of DNA of interest, without the adapters.

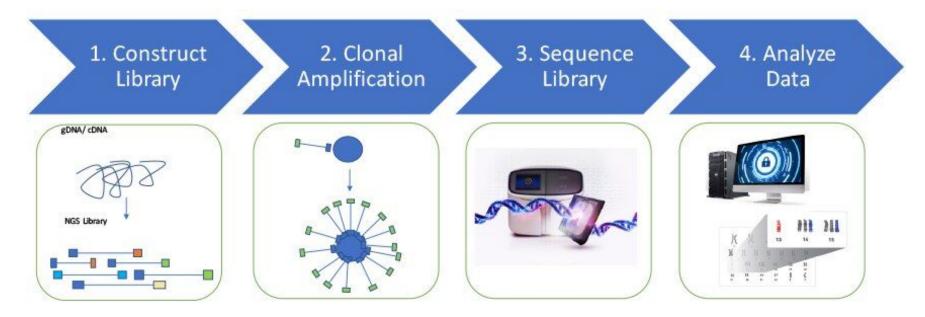

NGS workflow


Clonal amplification

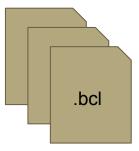
Prior to sequencing, the DNA library must be attached to a solid surface and clonally amplified to increase the signal that can be detected from each target during sequencing.

(a) thermofisher platforms rely on emulsion to amplify clonal sequencing features. (b) The Illumina technology relies on bridge PCR21,22 (aka 'cluster PCR') to amplify clonal sequencing features.

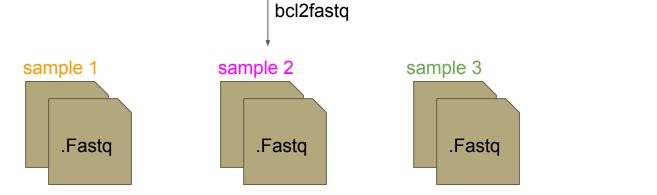

NGS workflow



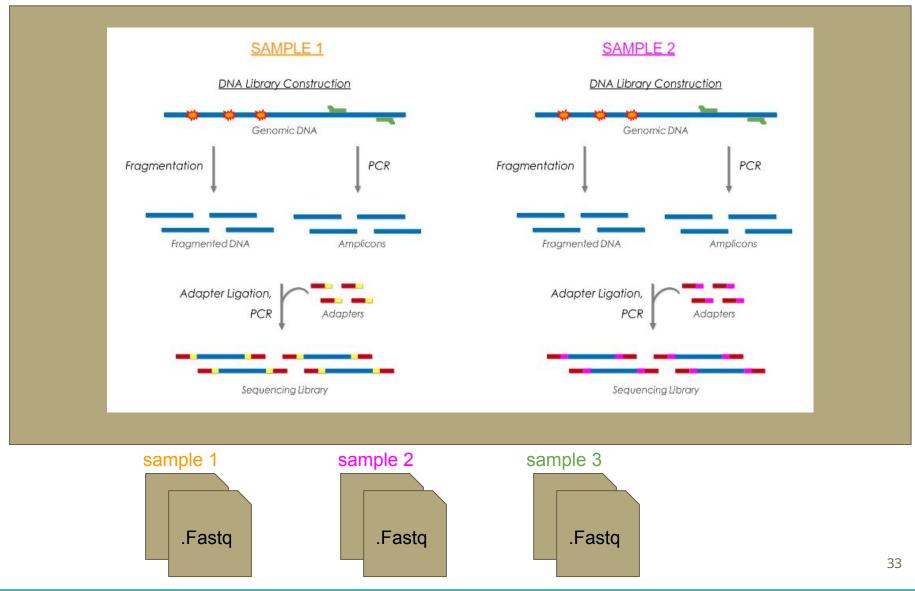
Illumina technology


NGS workflow

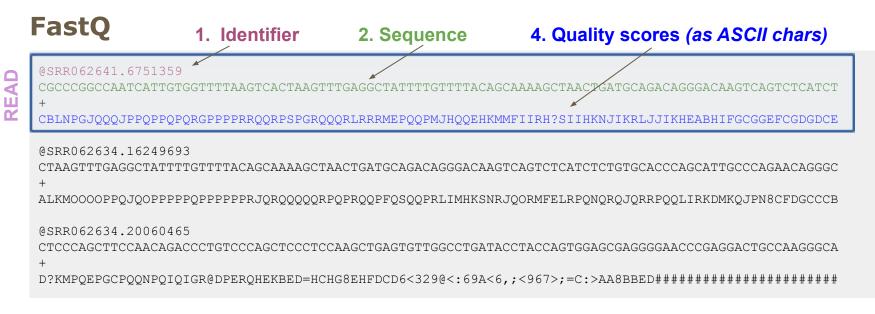
Data analyses


Extracting reads, Demultiplexing

+


[Header]							
IEMFileVersion	4						1 Contraction of the second se
Experiment Name	Project1						
Date	4/16/2016						1
Workflow	GenerateFASTQ						
Application	NextSeq FASTQ (Only		0.			
Assay	TruSeq LT						
Description							
Chemistry	Default						
[Reads]							12
151							
151							
[Settings]							
Adapter	AGATCGGAAGAG	GCACACGTCTGA	ACTCCAGTCA				
AdapterRead2	AGATCGGAAGAG	CGTCGTGTAGG	GAAAGAGTGT				
(Data)							
Sample_ID	Sample_Name	Sample_Plate	Sample_Well	17_Index_ID	index	Sample_Project	Description
Sample_1				A002	CGATGT		
Sample_2				A004	TGACCA		
Sample_3				A005	ACAGTG		
Sample 4				A006	GCCAAT		

Sample Sheet



Data analyses

Extracting reads, Demultiplexing

Sequencing reads file formats

FastA

Mais aussi: FAST5, BAM, ...

Fastq files (Paired-end)

2 files : R1, R2

Reads1.fq

@ERR229776.100000840
CTAGGAAGCGTAGTCCTGGGGGTCATCTCCCTATTAATACTGTTGGGGAATGTTTAGTA
+

BAEEAGEED96EHFE@BF><>EAAC;EBH<K<6:HJGFFHBC>DDIKG4AIHFFD@0/= @ERR229776.100020365

CATTATTTCATAGTAGCCAAAAAGTGGAAACAGTCAAAATATCCGTCAGTGAATTGACC +

1.*/.,/&((&3=;B@F860C>@51(3:).6GG-68C*:CG)#B4/=HDJ6;79)<@C/ @ERR229776.100104918

TATTTCTGGAATTTTCCATTTAATATTTTCAGACTGCAGTTGACTGCGGGTAACTGAAA +

CEEEEFEDAEGGGFDHGFFHGIHHHIIIIGKHBKJJIGHFHKILJKLEJLJJIFJMJK

Reads2.fq

@ERR229776.100000840

TTCTGGTCAGTAAGACCTCAAAAGGTTAAATACTAGCGATTTACACACCCTTAAATGATT +

CFIEEG@FFFGKFJHJ>HHKLLJIIJILLJIILJHKAKJKKJJJJJJLMKJMKJJJJKJ @ERR229776.100020365

CCTAAAATGGTGTGTTTTCGTATATTCACAATGCTGTGGAACCATCACCACTATCTGAT +

4B@EDFF=(/CHBHEHCE6@ED8E@@I6HJB6E:6%@C46FFIBGCIGKD,DN=CBBE@ @ERR229776.100104918

TCTTTCTTTTGTTTTTTTTTTCTGAGATGTCTTTTGTTTTGTTCTGAGGTCTTGTTATG +

```
CFIGGGKHHHFHHFIJIIIJKLIIHJIIIKLJKKIJKLLKJFJJMHJJLFJMJIKKJJJ
```

1 interleaved paired file

Reads.fq

B[[X[YY[YVcc_cccc_cc____[[[V[^^^^VU[]]Z^^B @SRR531199.3 ILLUMINA_0130:3:1101:1366:1970 length=99 TGGTCAATACAAGCCGCAATACCTGCATCATGCGGNGGAANAATTTGCGCGCCGTTTTC +

Day 1: Bases of NGS analyses for RNA-seq

- NGS Introduction
- Reads Quality Control

Reads quality

- Errors when reading bases
- Depends on sequencing technologie
- Error rate tends to increase with read size
 - \Rightarrow For each position in the read
 - One base (A/T/C/G)
 - One error probability

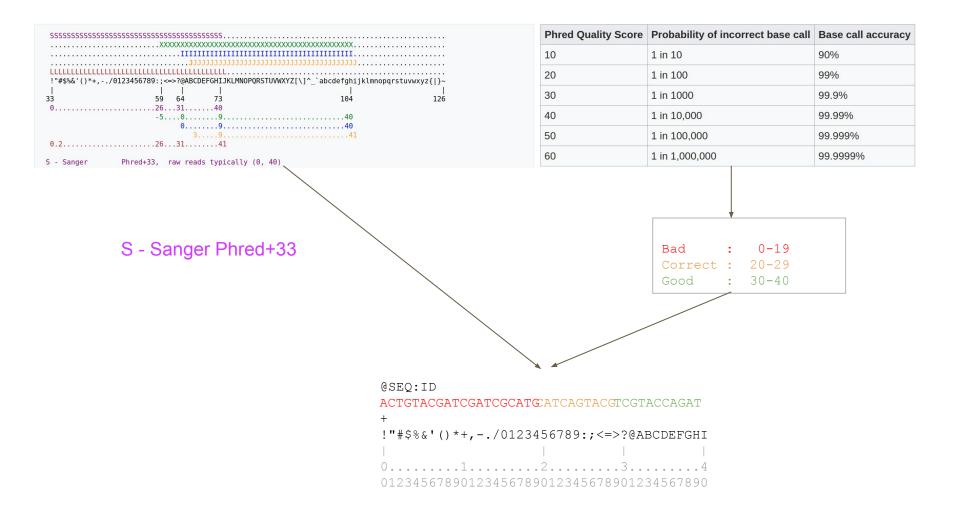
Phred Quality Score (for a base)

Phred quality scores **Q**: logarithmically related to the base-calling error probabilities \mathcal{P}

$Q=-10~\log_{10}P$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

Quality score encoding


For history reasons, more than one coding convention

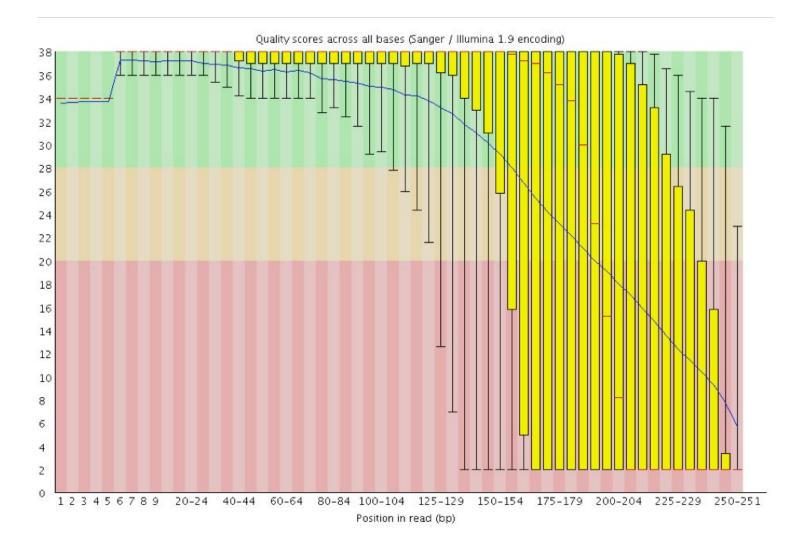
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	355555555555555555555555555555555555555	SSSSSSS		

	J.			
!"#\$≈&`()*+,/U1234	156/89:;<=>?@ABC	CDEFGHIJKLMNOPQRSTUVWX	<pre>KYZ[\]^_`abcdefghijklmno</pre>	pqrstuvwxyz{ }~
33	59 64		104	126
0		40		
	-50	9	40	
	0	9		
		39		
0.2				
				93
S - Sanger Phr	ced+33, raw rea	ads typically (0, 40)		
X - Solexa Sol	lexa+64, raw rea	ads typically (-5, 40)		
I - Illumina 1.3+ Phr	red+64, raw rea	ads typically (0, 40)		
J - Illumina 1.5+ Phr				
		Segment Quality Contr	ol Indicator (bold)	
(Note: See discus		peducite Xuarrel court	.or indicator (2014)	
	and the second	da tumicallu (0 41)		
L - Illumina 1.8+ Phr				
P - PacBio Phr	cea+33, HiFi re	eads typically (0, 93)	Source : http	ps://fr.wikipedia.org/wiki/FASTQ

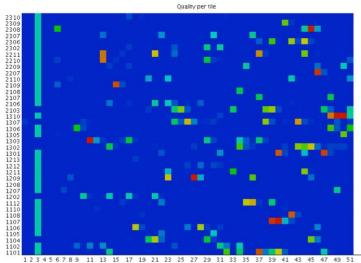
ASCII table

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	[NULL]	32	20	[SPACE]	64	40	0	96	60	`
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	а
2	2	[START OF TEXT]	34	22	0	66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	С	99	63	С
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	е
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27	1	71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	ĥ
9	9	[HORIZONTAL TAB]	41	29)	73	49	1	105	69	i
10	А	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	Κ	107	6B	k
12	С	[FORM FEED]	44	2C	,	76	4C	L	108	6C	1
13	D	[CARRIAGE RETURN]	45	2D	÷	77	4D	Μ	109	6D	m
14	E	[SHIFT OUT]	46	2E	100 C	78	4E	Ν	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	Ρ	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r

Example for score interpretation using sanger encoding

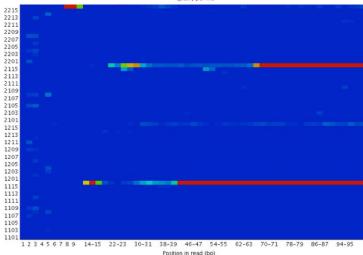

Quality Control (QC)

Quality Control (QC) is important to:


- Check if your sample sequencing went well
- Know when you need to sequence again (sequencing platform QC fail)
- Identify potential problems that can be fixed, or not
- Follow the impact of preprocessing steps

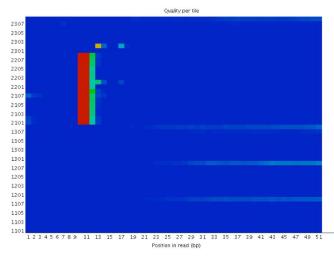
 $\Rightarrow FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)$ + MultiQC (https://multiqc.info/) when comparing multiple datasets

Loss of base call accuracy with increasing sequencing cycles Source: https://sequencing.qcfail.com



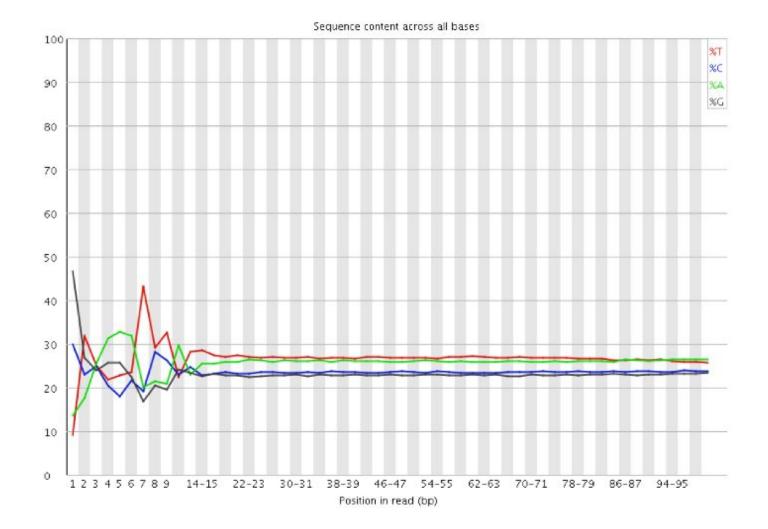
Position specific failures of flowcells

2 5 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 5 Position in read (bp)


Quality per tile

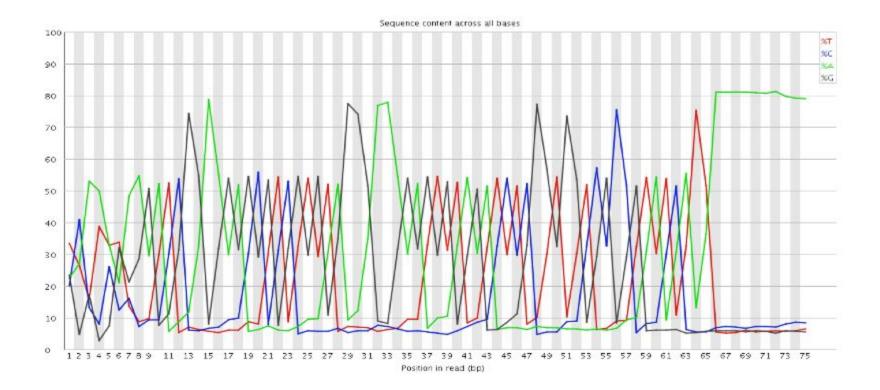
2213 2211 2209 2207 2113 2111 1213 1211 1205 1203 1201 1105 1 2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Quality per tile

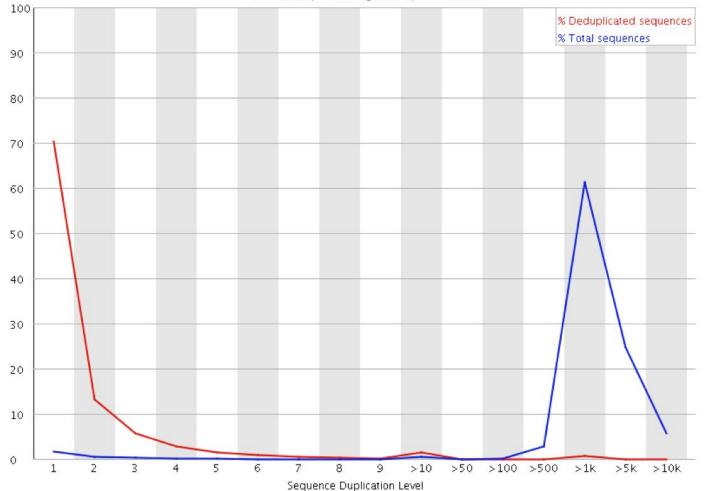

2 3 4 5 6 7 8 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 5 Position in read (op)

Source: https://sequencing.qcfail.com

Positional sequence bias in random primed libraries


Source: https://sequencing.gcfail.com

45


Contamination with adapter dimers

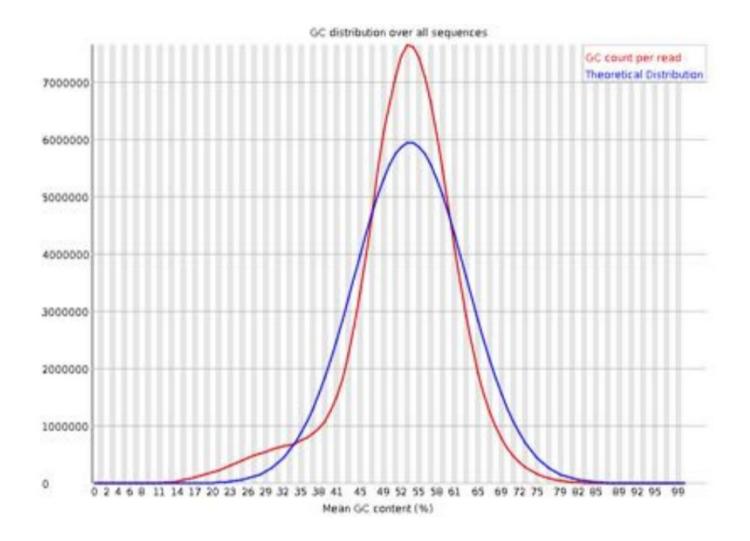
Source: https://sequencing.qcfail.com

Libraries contain technical duplication

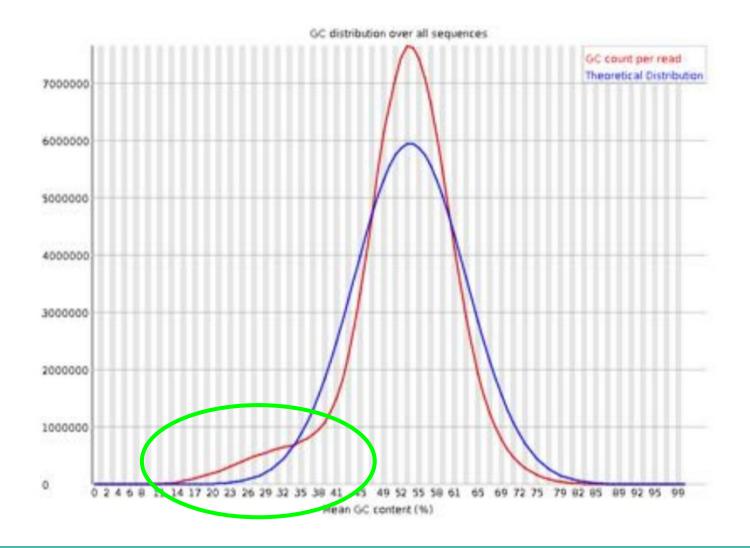
Source: https://sequencing.qcfail.com

Percent of seqs remaining if deduplicated 2.58%

Why do we not expect duplicate reads in DNA-seq?

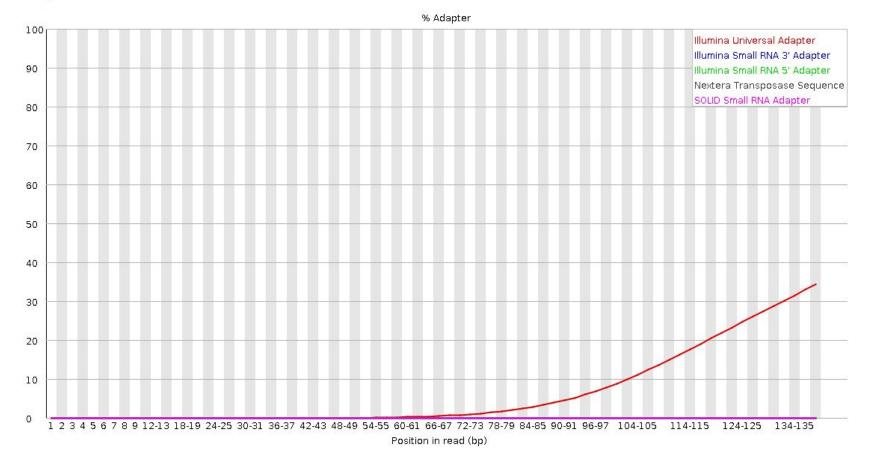


Why do we not expect duplicate reads in DNA-seq?

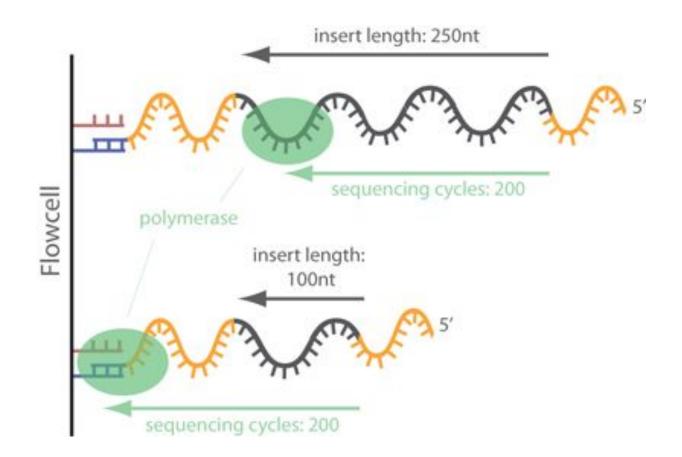


- Reads are randomly distributed on the genome
- Unless a region has a very high depth of coverage, the probability of two reads being identical is very low

GC content / Contamination ?



GC content / Contamination ?



Adapter content

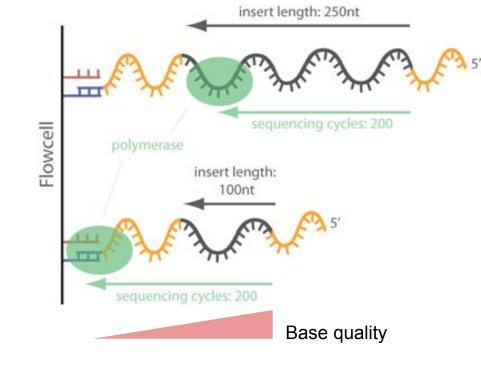
OAdapter Content

Adapter content

Day 1: Bases of NGS analyses for RNA-seq

- NGS Introduction
- Reads Quality Control
- Reads Cleaning

Goal: read cleaning

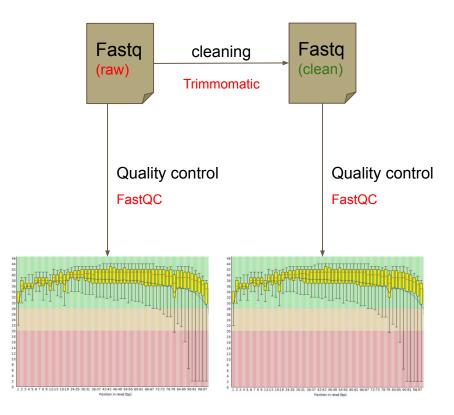

@SRR062641.6751359 +CBLNPGJ000JPP0PP0P0RGPPPPRROORPSPGR000RLRRRMEP00PMJH00EHKMMFIIRH?SIIHKNJIKRLJJIKHEABHIFGCGGEFCGDGDCE @SRR062634.16249693 +@SRR062634.20060465 +@SRR062635.15516129 +@SRR062641.6751359 +CBLNPGJQQQJPPQPPQPQRGPPPPRRQQRPSPGRQQQRLRRRMEPQQPMJHQQEHKMMFIIRH?SIIHKNJIKRLJJIKHEABHIFGCGGEFCGDGDCE @SRR062634.16249693 +@SRR062634.20060465 CTCCCAGCTTCCAACAGACCCTGTCCCAGCTCCCTCCAAGCTGAG +D?KMPOEPGCPOONPOIOIGR@DPEROHEKBE€HCHG8EHFDCD

Clean

RAW

Reads cleaning

- Cut adaptators at read ends
- Trimming : cut read ends (5' ou 3')
 - Fixed number of bases
 - Individual base quality
 - Mean quality of bases in a sliding window
- Filtering : remove read
 - Size criteria (example < 60bp)
 - Mean base quality for all bases criteria (example < 25)



Reads cleaning example

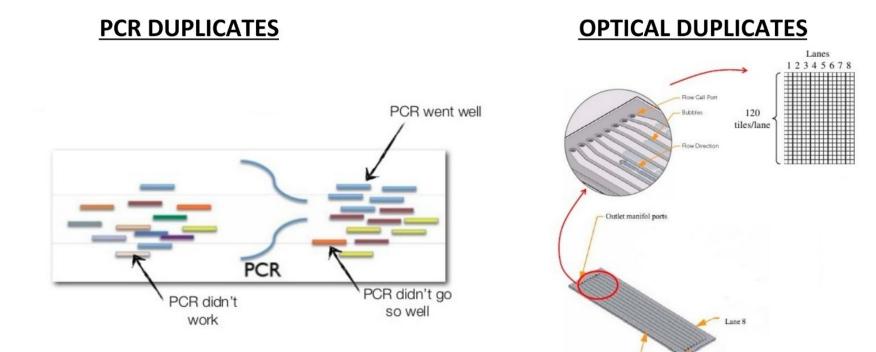
Tool: Trimmomatic

Workflow

usegalaxy.fr presentation

Practical: Quality Control (QC) & Cleaning

Open Galaxy

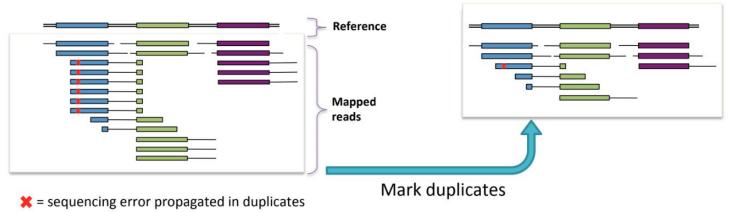

usegalaxy.fr

Practical: <u>https://training.galaxyproject.org/training-material/topics/</u> <u>sequence-analysis/tutorials/quality-control/tutorial.html</u>

TIAAS: https://usegalaxy.fr/join-training/bilille-rnaseq-2023/

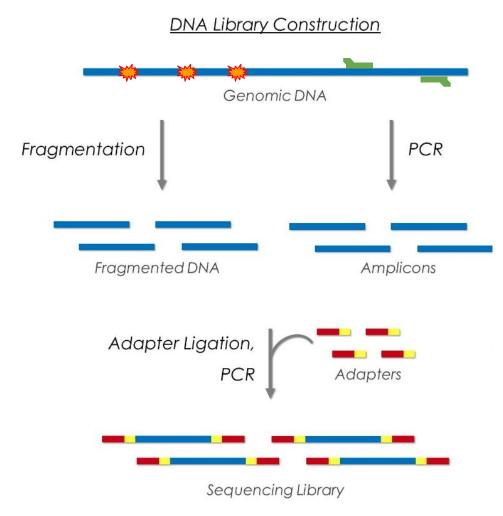
Mapping

How do duplication events arise?

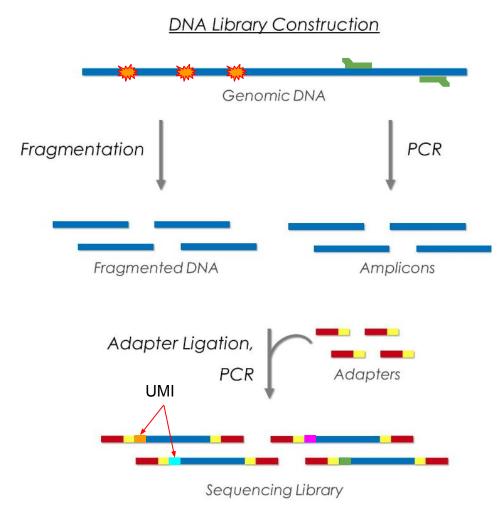


Inlet manifold ports

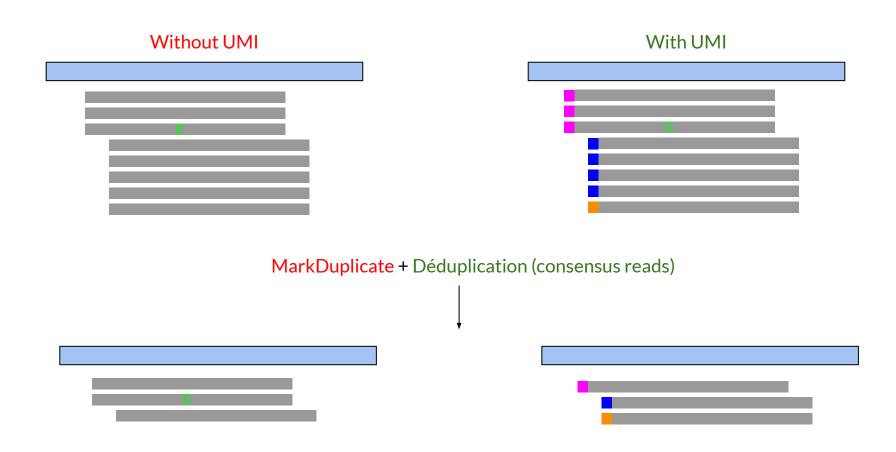
Lane 1

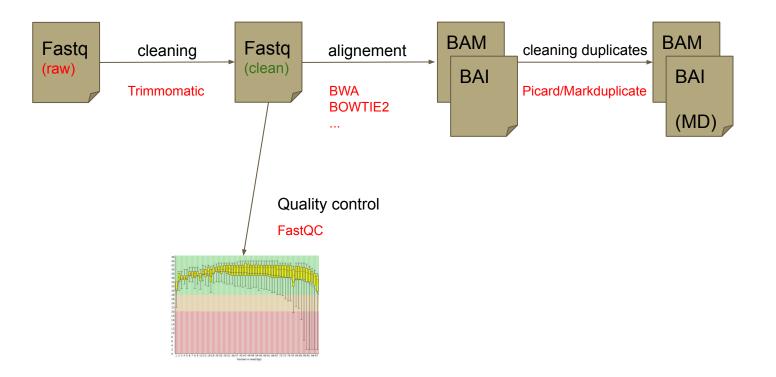

Why mark duplicates?

- Duplicates are sets of reads pairs that have the same unclipped alignment start and unclipped alignment end
- They're suspected to be **non-independent measurements** of a sequence
 - Sampled from the exact same template of DNA
 - · Violates assumptions of variant calling
- What's more, errors in sample/library prep will get propagated to *all* the duplicates



• Just pick the "best" copy – mitigates the effects of errors


Molecular Barcoding (UMI, *unique molecular identifiers*)


Molecular Barcoding (UMI, unique molecular identifiers)

Molecular Barcoding (UMI, unique molecular identifiers)

Workflow

Practical: Mapping

Open Galaxy

usegalaxy.fr

Practical: <u>https://training.galaxyproject.org/training-material/topics/</u> <u>sequence-analysis/tutorials/mapping/tutorial.html</u>

TIAAS: https://usegalaxy.fr/join-training/bilille-rnaseq-2023/