

Unit 5/5: RNA-seq analysis

RNA-seq bioinfo analysis

Oct. 3rd, 4rth, 5th, & 6th, 2023

Camille Marchet - Pierre Pericard

Day 2 & 3: RNA-seq bioinfo analysis

Day 2

- Lecture: with reference RNA-seq
 - RNA-seq QC + Cleaning
 - Mapping on reference
 - Assembly with reference
 - Quantifying gene expression
- Practical: with reference and de-novo RNA-seq (Day 2 & 3)

Day 3

- Lecture: de-novo RNA-seq
 - de-novo assembly
 - local assembly for variant calling
- Practical: with reference and de-novo RNA-seq (Day 2 & 3)
- Lecture: Introduction to long-reads RNA-seq

General Introduction

Goals

This course main goals:

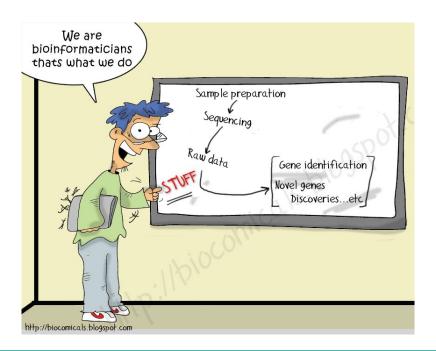
An overview of RNA-seq data analysis

• Identify the (key issues/points) (critical steps/parameters)

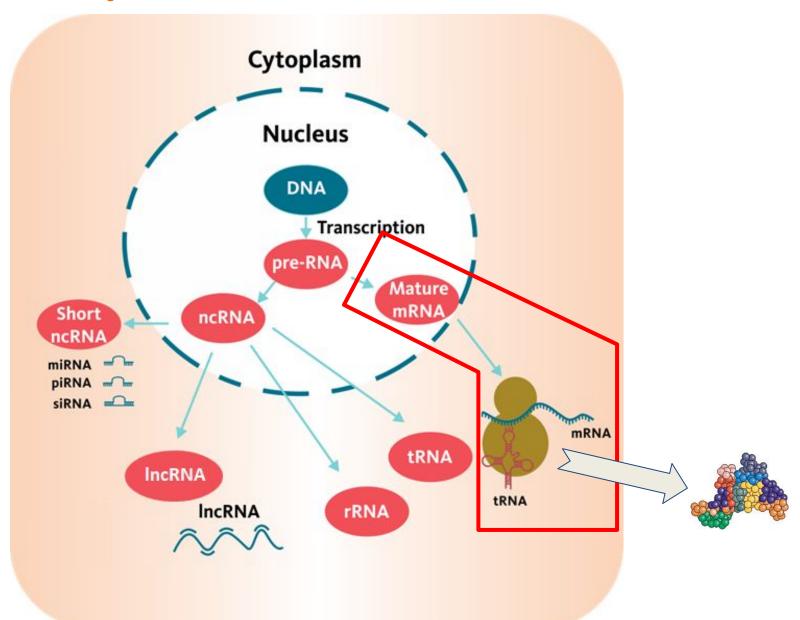
Warning!

This is NOT a course to train you as a bioinformatician, and this course will NOT allow you to design an analysis pipeline set-up for your specific needs

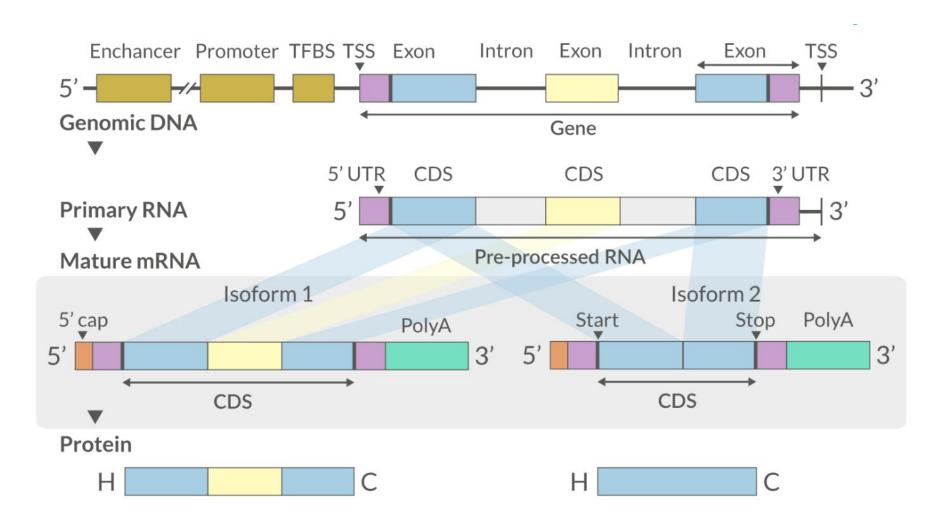
This course WILL give you the basis information to understand and run a generic RNA-seq analysis, its key steps and problematics, and how to interact with bioinformaticians/bioanalysts that can analyze your RNA-seq datasets



Preliminary



Maturation and variability of RNA



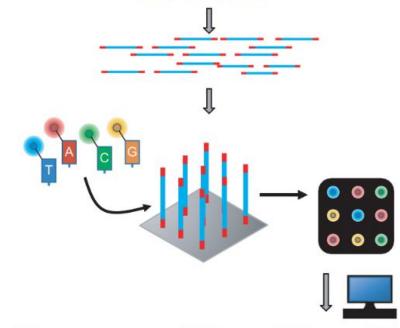
Sequencing overview

Extraction de l'ARN

Fragmentation de l'ARN

Conversion en ADNc Ajout de séquences adaptatrices Amplification de la librairie

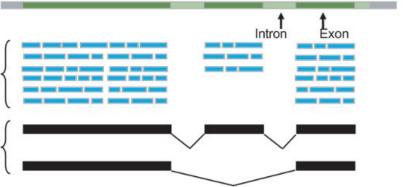
Séquençage



Analyse bio-informatique Génome de référence

> Séquences (reads) des fragments d'ARN

Alignement des fragments Quantification des transcrits Epissages alternatifs



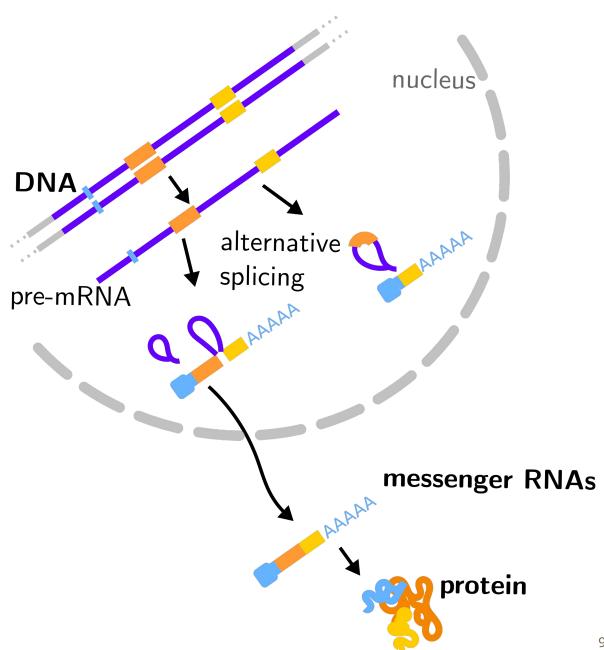
Preliminary

Transcriptome/transcript

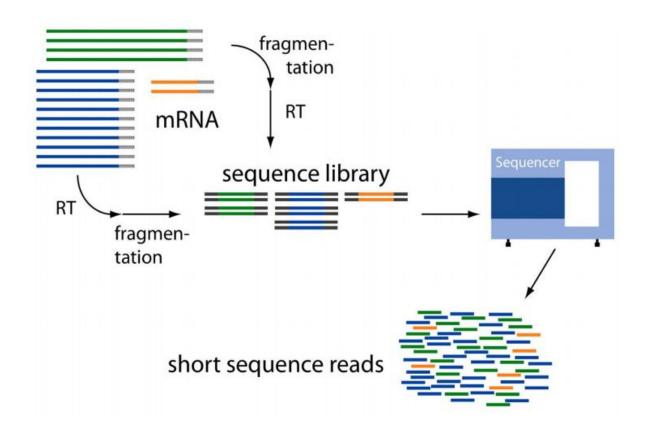
Transcriptomics

(Alternative) isoform

Splicing



Sequencing: overview



From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html

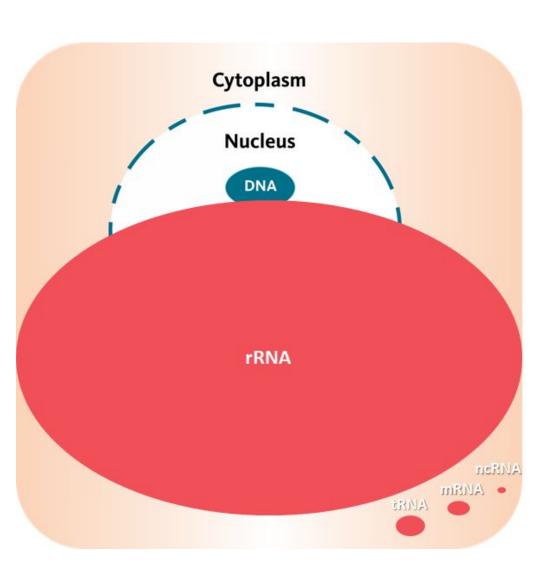
How to make cDNA libraries

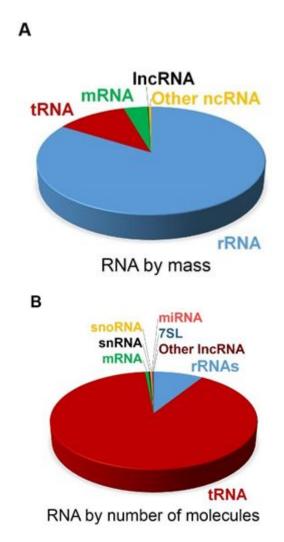
- Extract RNA, convert to cDNA
- pass to next gen sequencer
- millions to billions of reads

make cDNA?

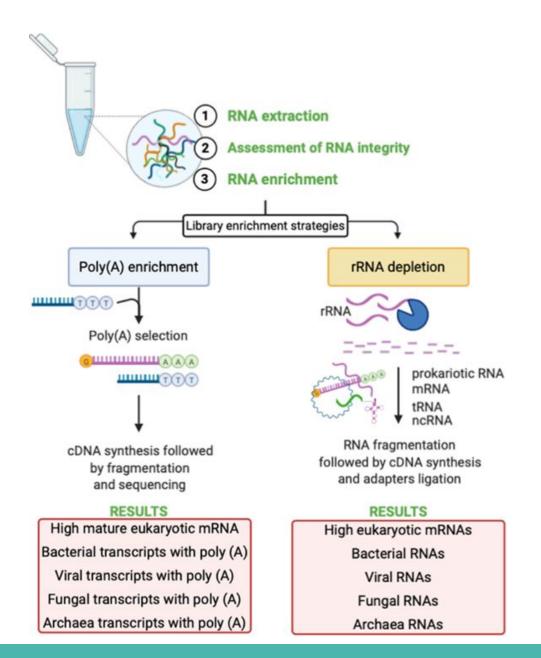
- Prime mRNA with random hexamers R6
- reverse transcriptase => cDNA first strand synthesis
- then second strand
- => illumina cDNA library

Do you want all RNAs?





How to make cDNA libraries



How to sequence (1)

RNA selection

- polyA+
- Ribo-Zero (human, mouse, plants, bacteria, ...)

```
(ARN = 90\% \text{ of } ARNr, 1-2\% \text{ of } ARNm)
```

in prokaryotes: no polyA (= no capture), no splicing (= less complex)

Types of reads, experimental design

- paired-end
- replicates

How to sequence (2)



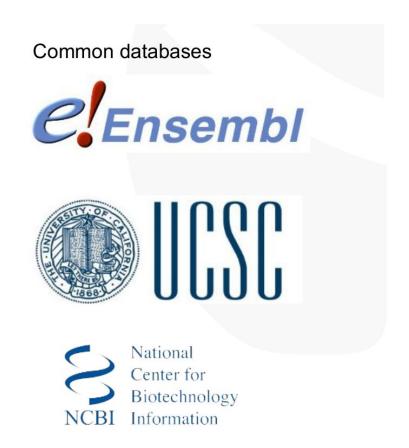
RNA-seq

- reads around **150-200** bp
- the number of detected transcripts increases with the sequencing depth
- the expression measure is more precise with more depth
- 5 million reads can be enough to detect genes mildly-highly expressed in human
- 30 million reads: a typical middle-size project for quantification
- 100 million must be preferred to detect lowly expressed genes (see for instance saturation curves in "Differential expression in RNA-seq: a matter of depth." Genome Res. 2011)
- these numbers depends on the species/tissues (complex splicing...)
- keep replicates in mind

There are plenty of protocols...

Méthode	Description	Référence
mRNA-seq	Identification les ARN messagers.	[Mortazavi et al., 2008]
miRNA-seq	Identification les micro ARN.	[Ruby et al., 2006]
$\operatorname{GRO-Seq}$ (Global Run-On Sequencing),	Sélection et séquençage uniquement le	[Core et al., 2008]
PRO-Seq (Precision Run-On Sequencing) et	ARNs en cours de transcription par l'ARN polymérase II.	[Kwak et al., 2013]
NET-Seq (Native elongation transcript sequencing)	[C1	hurchman and Weissman, 201
Ribo-Seq (Ribosome profile sequencing)	Identification les ARNs messagers en cours de traduction.	[Ingolia et al., 2009]
et TRAP-Seq (Targeted purification of polysomal mRNA sequencing)		[Reynoso et al., 2015]
RIP-Seq (RNA immunoprecipition sequencing),		[Cloonan et al., 2008]
CLIP-Seq (Cross-linking and immunoprecipitation sequencing),	Détermination des régions d'ARN liée une protéine d'intérêt.	es à [Chi et al., 2009]
PAR-CLIP (Photoactivatable- ribonucleoside-enhanced cross-linking and immunoprecipitation) et		[Hafner et al., 2010]
iCLIP (individual-nucleotide resolution CLIP)		[Huppertz et al., 2014]
ChIRP-Seq (Chromatine isolation by RNA purification)	Identification des régions du génome qui interagissent avec l'ARN.	[Chu et al., 2011]
PARE-Seq (Parallel analysis RNA ends sequencing)	Etude des sites de clivage des micro-ARNs ainsi que de la dégradation des ARNs.	[German et al., 2009]

Resources: genomes, transcriptomes, annotations



Keep track of the URL, name and version of the files in databases you use

Sequencing reads file formats

FastQ

1. Identifier

2. Sequence

4. Quality scores (as ASCII chars)

@SRR062641.6751359

CBLNPGJQQQJPPQPPQPQRGPPPPRRQQRPSPGRQQQRLRRRMEPQQPMJHQQEHKMMFIIRH?SIIHKNJIKRLJJIKHEABHIFGCGGEFCGDGDCE

@SRR062634.16249693

+

ALKMOOOOPPQJQOPPPPPPPPPPPRJQRQQQQQRPQPPQQPFQSQQPRLIMHKSNRJQORMFELRPQNQRQJQRRPQQLIRKDMKQJPN8CFDGCCCB

@SRR062634.20060465

+

FastA

>SRR062641.6751359

>SRR062634.16249693

>SRR062634.20060465

Mais aussi: FAST5, BAM, ...

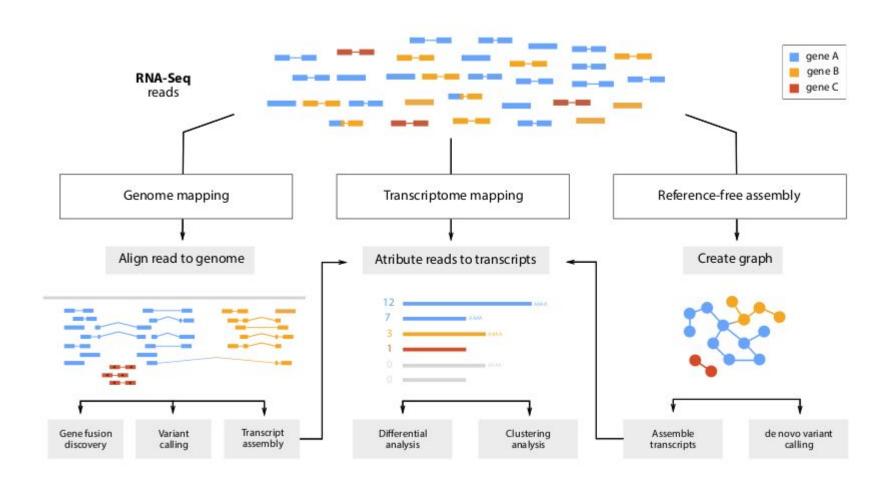
FASTQ format: Quality

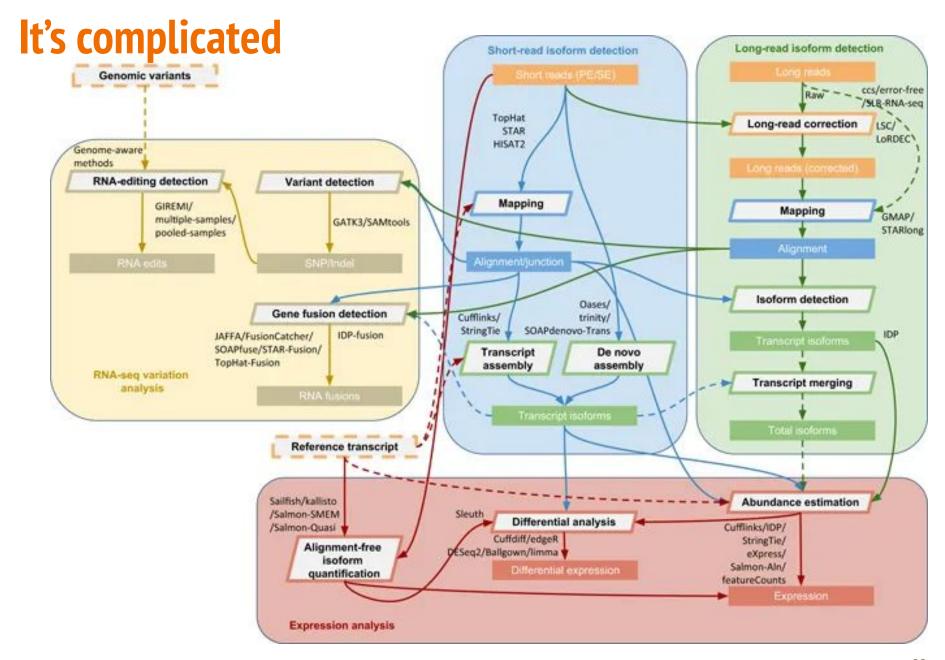
```
......
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefqhijklmnopqrstuvwxyz{|}~
33
                                        126
                              104
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)
 with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

$$Q_{\mathrm{sanger}} = -10 \, \log_{10} p$$

Quality	Error rate	
10	10%	
20	1%	
30	0.1%	
40	0.01%	

What people do with their RNA-seq





Outcomes of RNA-seq studies

- gene annotation
- protein/function prediction
- gene/splicing quantification
- isoform discovery/fusion transcripts/lncRNA...
- variant calling
- methylations
- RNA structures

-

QC - Cleaning - Preprocessing

Known biases in RNA-seq

Known biases in RNA-seq

Biological sample:

- presence of pre-mRNA
- 3' bias over-represented (RNA degradation)
- contaminations

Library preparation:

- DNAse fail
- rRNA depletion not effective
- pcr bias
- variable insert size (smaller than sequencing length)
- reads with no inserts

Sequencing:

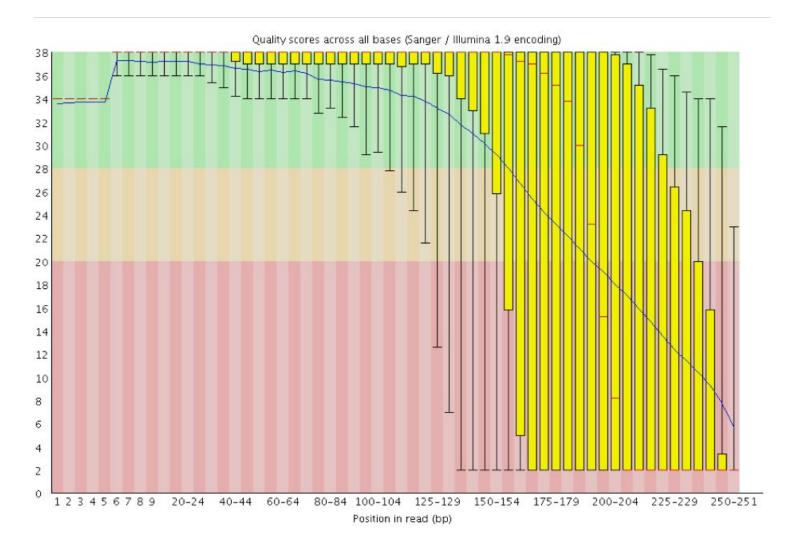
quality drops at the end of reads

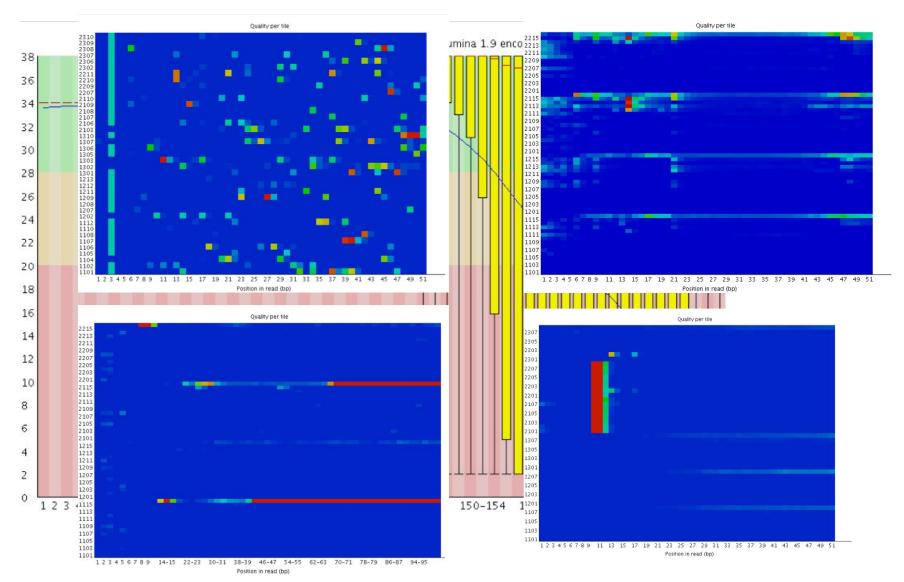
Quality Control (QC)

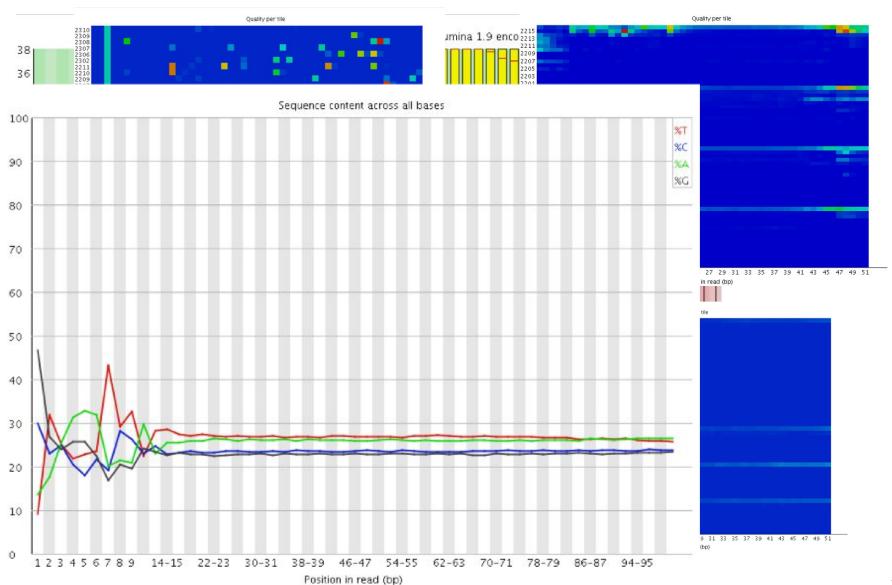
Quality Control (QC) is important to:

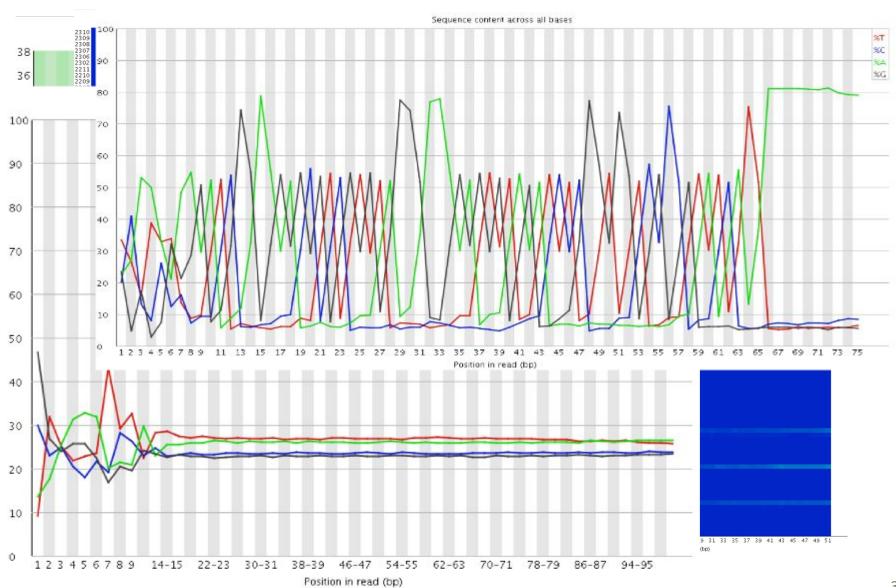
- Check if your sample sequencing went well
- Know when you need to sequence again (sequencing platform QC fail)
- Identify potential problems that can be fixed, or not
- Follow the impact of preprocessing steps

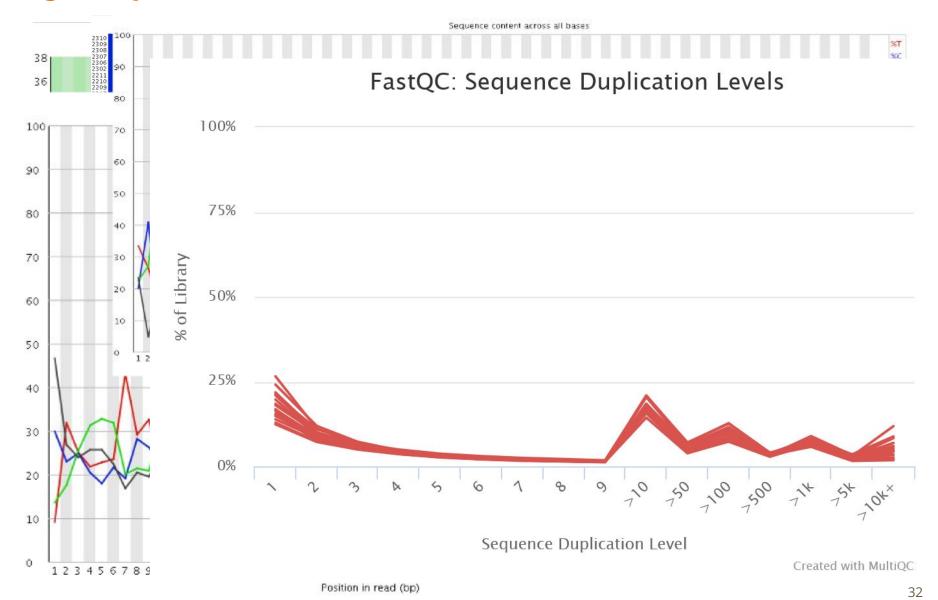
- \Rightarrow FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
- + MultiQC (https://multiqc.info/) when comparing multiple datasets

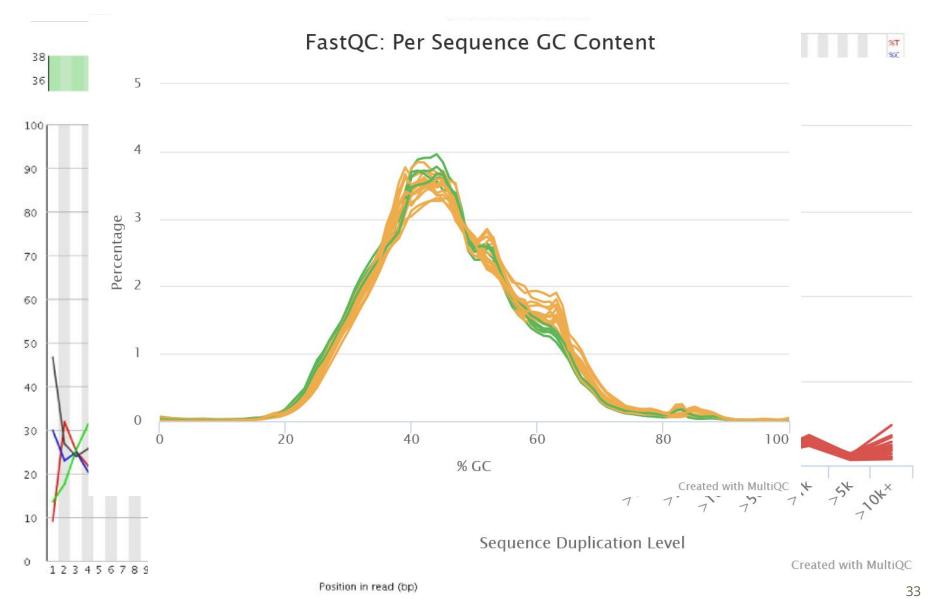




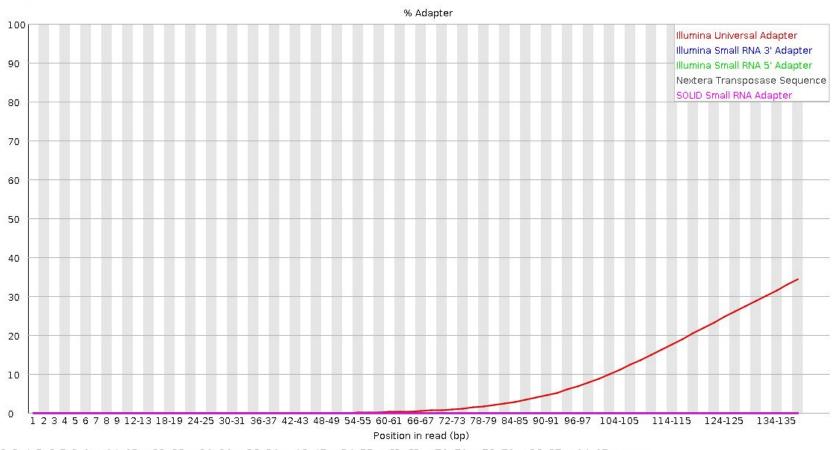








FastQC: Per Sequence GC Content



1 2 3 4 5 6 7 8 9 14-15 22-23 30-31 38-39 46-47 54-55 62-63 70-71 78-79 86-87 94-95

Cleaning - Preprocessing

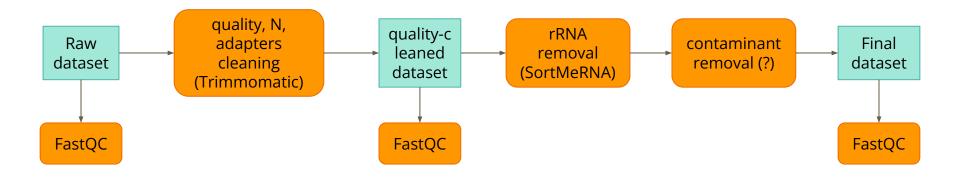
Cleaning should be done in the reverse order that errors were generated.

- 1. Sequencing errors: quality trimming and filtering, Ns removal
- 2. Library preparation: adapters removal
- 3. Sample contamination: rRNA, mito, other contaminants

Note 1: step 1 (quality trimming) is not considered critical anymore and could even hinder downstream tools/algorithms.

Note 2: If the reads are going to be aligned against a reference genome, this whole process can be skipped or applied very lightly

Cleaning - Preprocessing



Practical: Quality Control (QC) & Cleaning

Open Galaxy

Practical: NGS2023_rnaseq_05_tp_bioinfo.pdf

Shared Data → Histories → TP RNAseq bilille Initial datasets

With reference RNA-seq

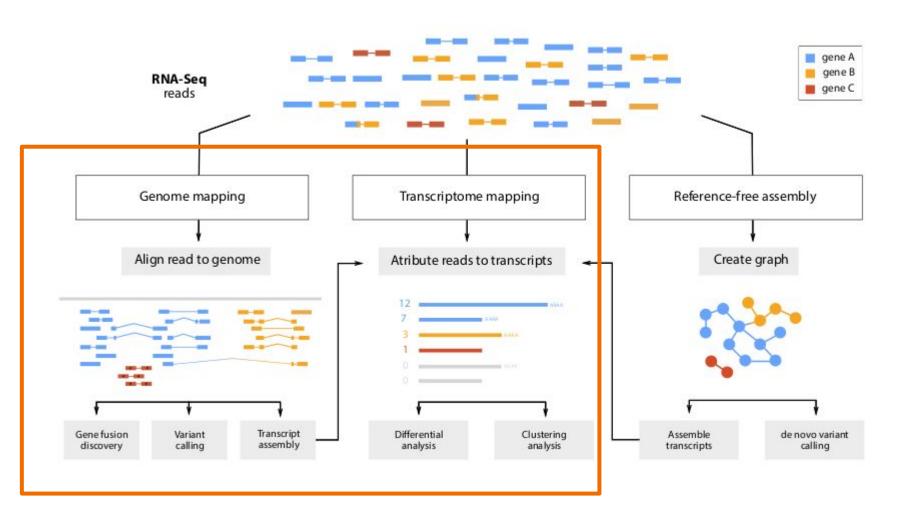
W/ reference RNA-seq. For what purpose?

Mainly:

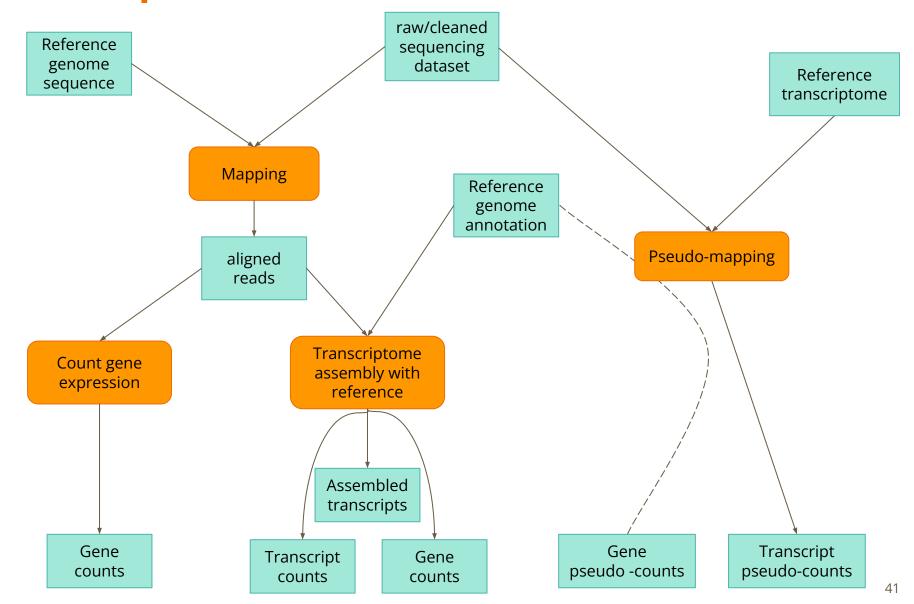
- Differential expression
 - between genes
 - between transcripts/isoformes

- Transcriptome assembly
 - variant calling
 - isoforme discovery

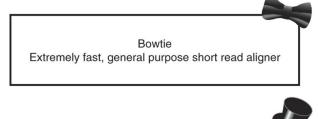
What people do with their RNA-seq



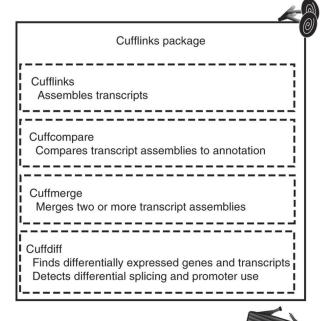
RNA-seq w/ ref



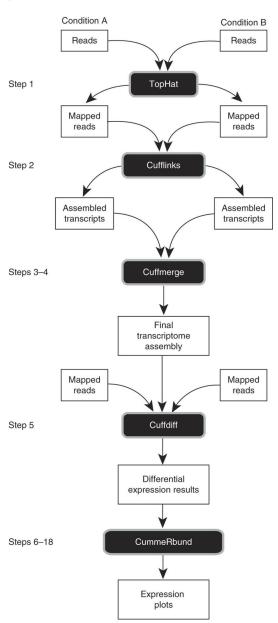
The champion: Tuxedo Suite, "Classic" version



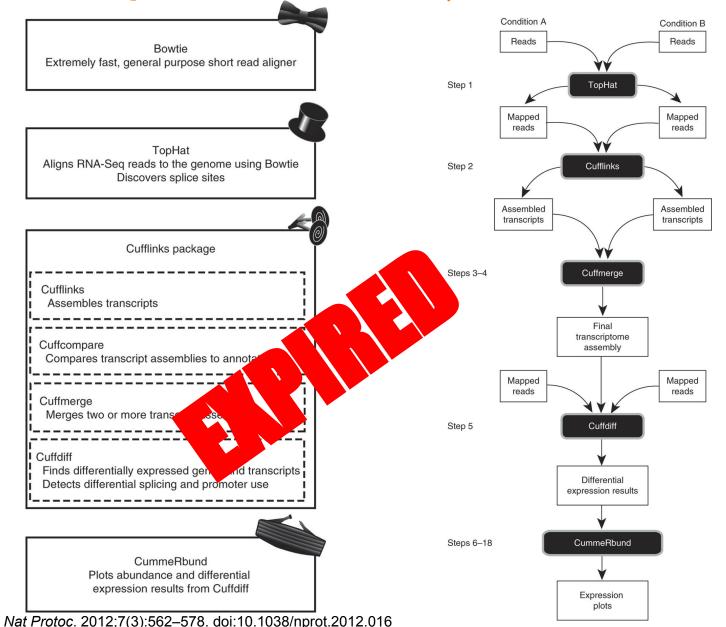
TopHat
Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites



CummeRbund
Plots abundance and differential
expression results from Cuffdiff



The champion: Tuxedo Suite, "Classic" version

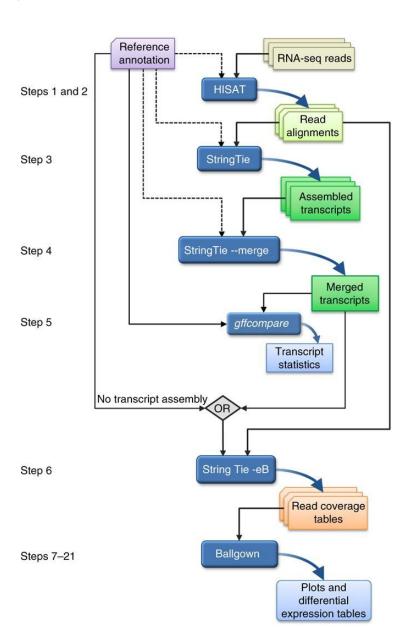


The champion: Tuxedo Suite, New version

HISAT/HISAT2: splice aware aligner

StringTie: Transcriptome assembler

Ballgown: Differential expression analysis



Nat Protoc. 2016;11(9):1650-1667. doi:10.1038/nprot.2016.095

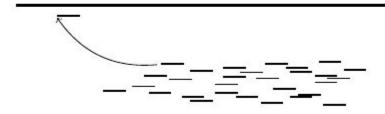
Methods

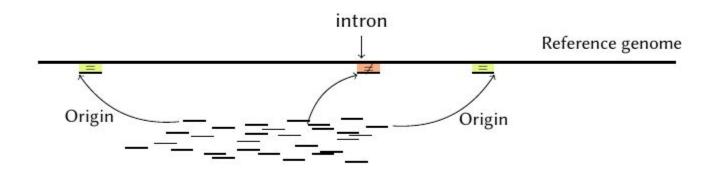
Let's focus on:

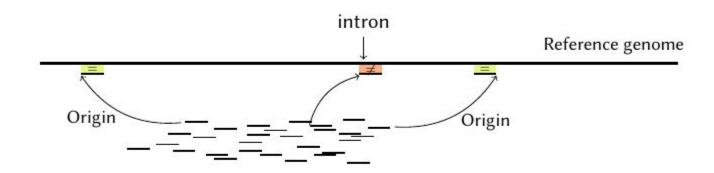
- 1 read alignment/mapping/other techniques to assign a read to a gene or a transcript
- 2- strategies for counting gene expression from read assignation

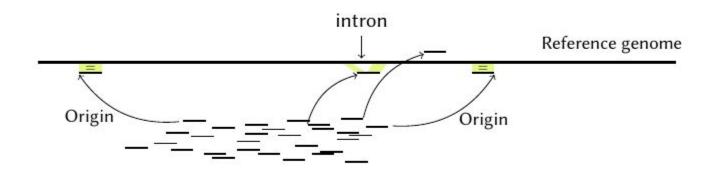
Reference genome

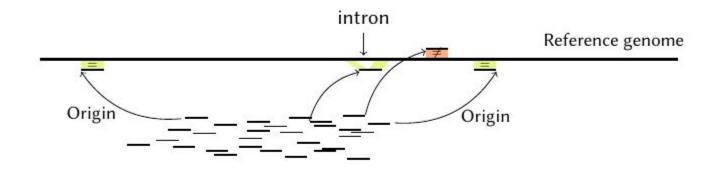
Reference genome

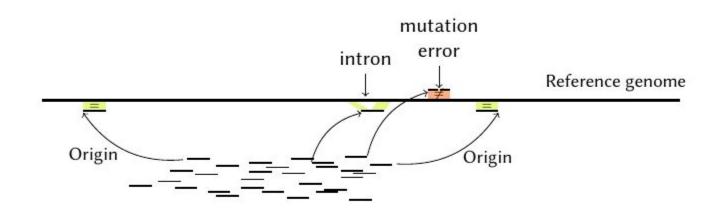


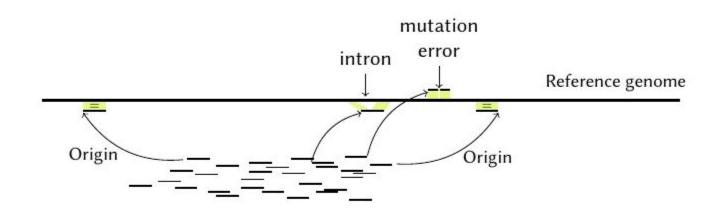


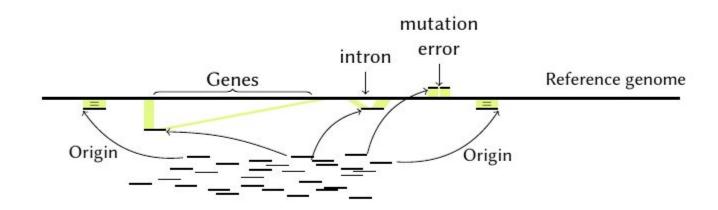




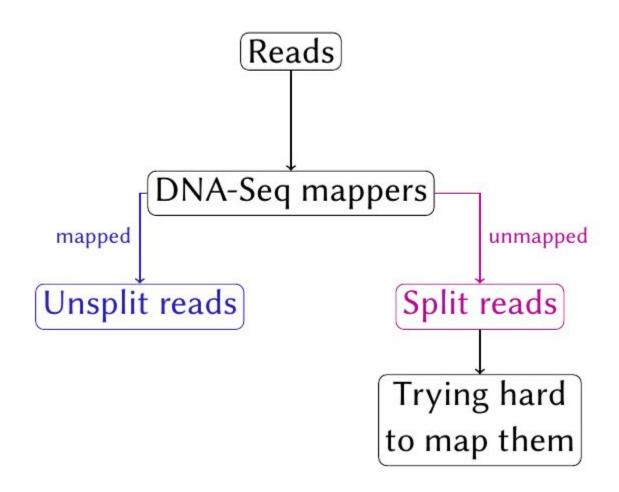




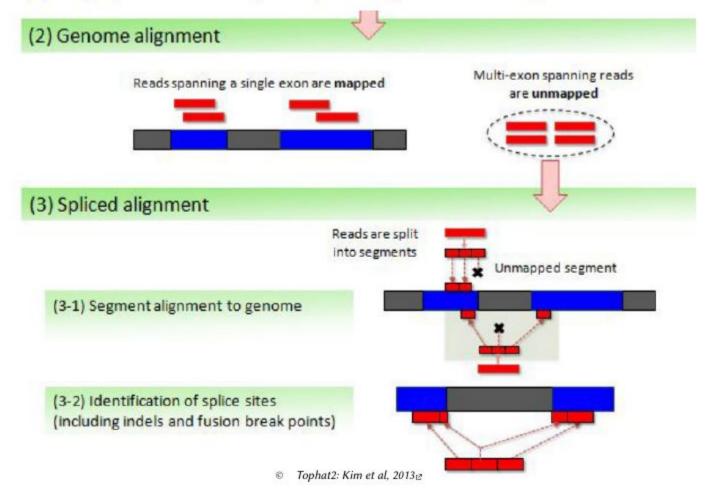




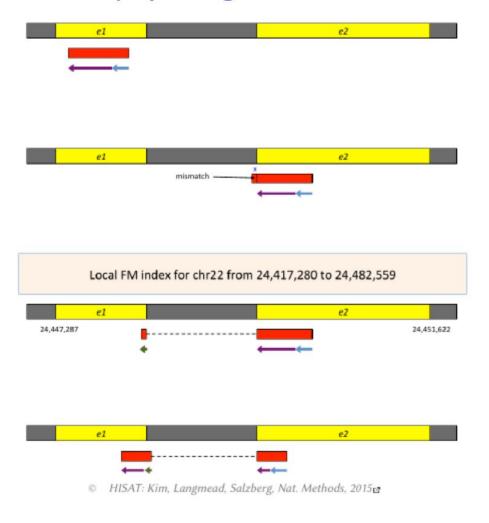
Split reads don't align contiguously to the genome



Mapping split reads by... splitting them - TopHat2



Mapping all reads by splitting them - HISAT2, STAR



blablablaseul dutexteblabla ementblatexte

ctrl-f: seul

ctrl-f: seule

Octrl-f: ement

Specificities of the approaches

Mapping methods

TopHat2 Exact contiguous fixed-lengh

HISAT Maximal mappable suffix

STAR Maximal mappable prefix

Indexing methods

TopHat2 FM-index

HISAT Multiple FM-indices

STAR Suffix Array

Indexing methods

Burrows-Wheeler Transform

k-mer sets - Burrows Wheeler transform?¹

Burrows Wheeler transform (BWT)

trrrwwwwwwwwooo___bbbyyyrrrrrrrrruuutt\$____aaaoooooooooo__

Compression through run length encoding

$$(t,1)(r,3)(w,9)(o,3) \dots (_,3)$$

Structures de données pour les grands ensembles de k-mer

Marchet C 7 / 39

¹Adapted from Ben Langmead's course

k-mer sets - Right contexts of w's

very similar right lexicographic contexts for all w's

```
row_row_your_boat
row_row_your_boat
row_row_your_boat$
```

trrrwwwwwwwooo___bbbyyyrrrrrrrrruuutt\$____aaaoooooooooo__

k-mer sets - Right contexts of o's

right lexicographic contexts for o's

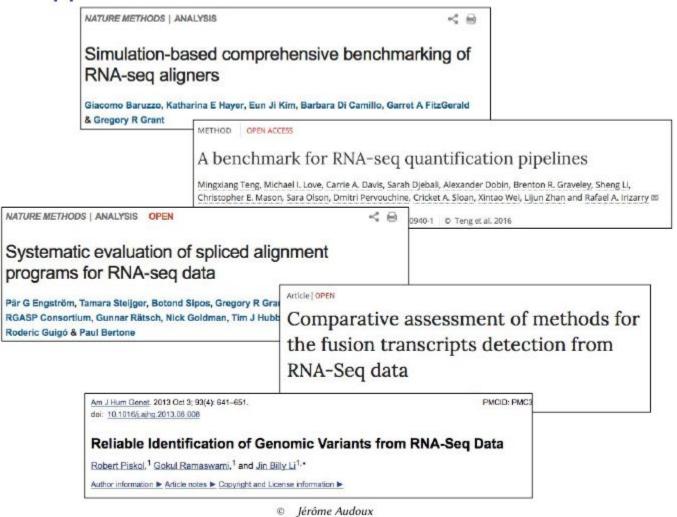
```
row_row_your_boat
row_row_your_boat
row_row_your_boat$

trrrwwwwwwwwwooo____bbbyyyrrrrrrrruuutt$______aaaooooooooooo_____
```

Structures de données pour les grands ensembles de k-mer

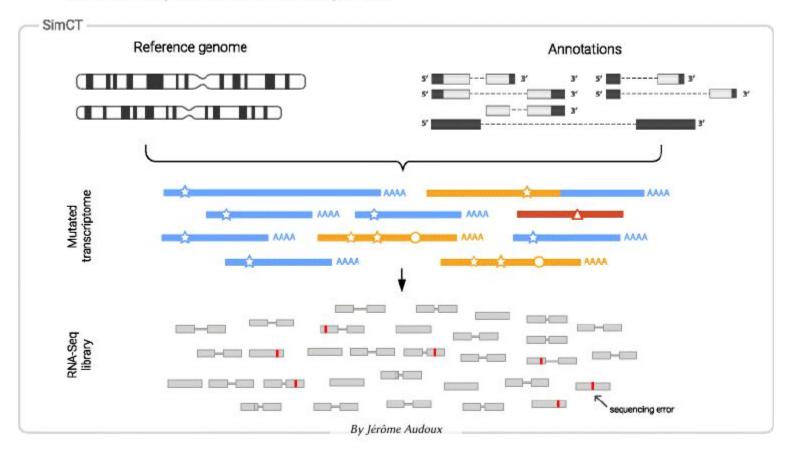
Marchet C 9 / 39

What approach is the best? (slide courtesy of J. Audoux)



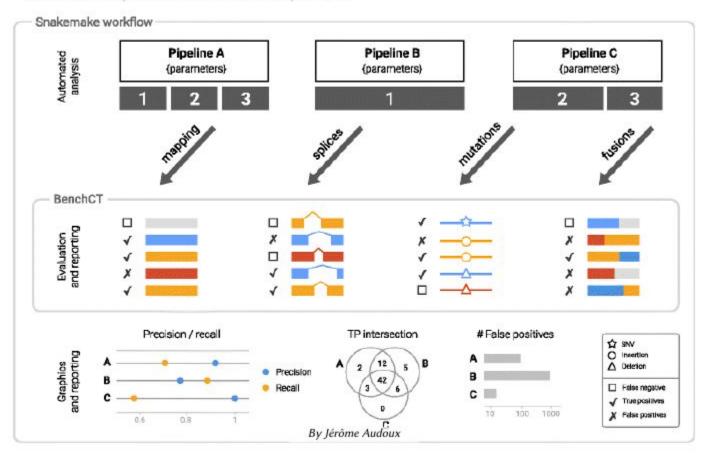
Benchmarking RNA-Seq aligners

Audoux et al, BMC Bioinformatics, 2017 @



Benchmarking RNA-Seq aligners

Audoux et al, BMC Bioinformatics, 2017 @

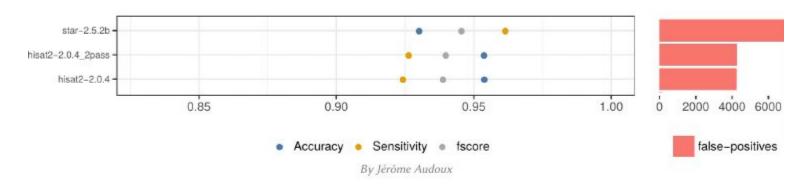


from Mikaël Salson

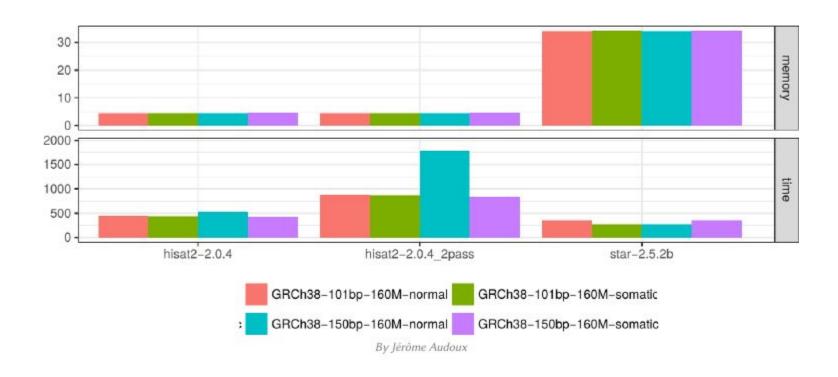
STAR offers the best trade-off for splice detection

Splicing

160M 150bp reads from GRCh38



Space/time for read mappers



Many people uses TopHat2

(> 10,623 citations in Scholar, > 1,000 citations in 2021 only)

Many people uses TopHat2

(> 10,623 citations in Scholar, > 1,000 citations in 2021 only)

but don't

On TopHat2 website (since Feb 2016) ₪

TopHat2 « is now largely superseded by HISAT2 which provides the same core functionality (i.e. spliced alignment of RNA-Seq reads), in a more accurate and **much more efficient** way ».

Do you really need to map reads?

Does it matter to have a base pair precision location for hundreds of millions of reads?

Alignment-free RNA-seq quantification

Quantifying transcripts may not require alignment

Kallisto

Bray et al, Nat. Biotechnology, 2016

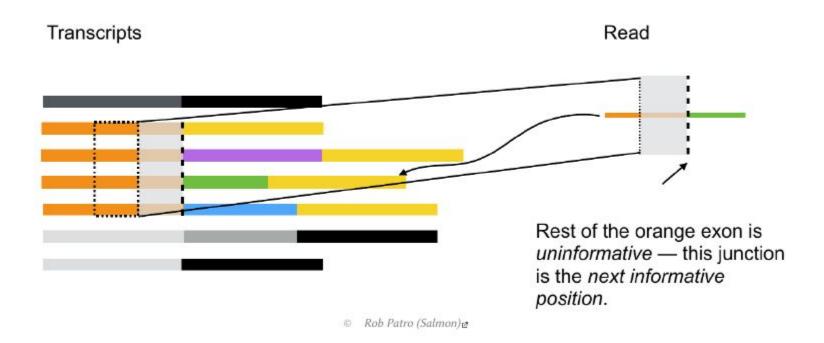
✓ Patro et al, Nat. Methods, 2017

Ø

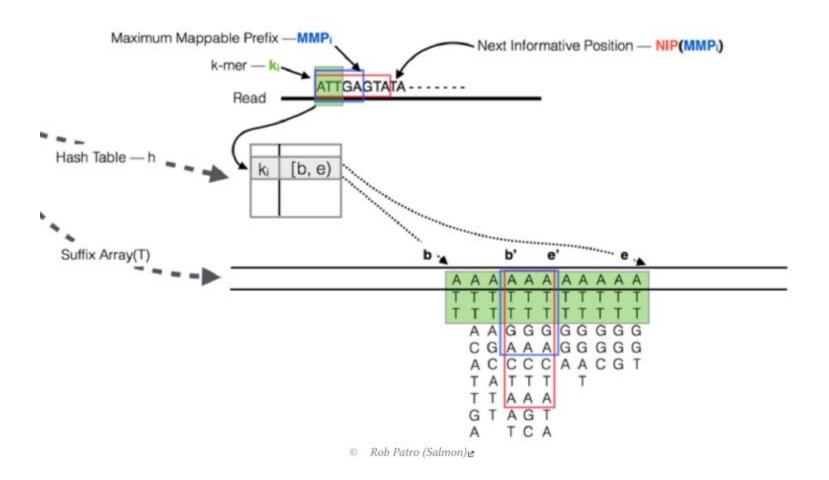
Salmon

Two orders of magnitude faster than TopHat+Cufflinks

How to quantify without aligning?



How to quantify without aligning?



Ultra fast methods with good results...

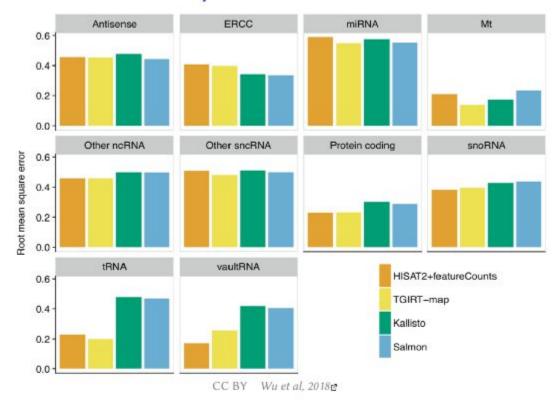
« With the exception of the underperforming Flux Capacitor and eXpress, we found that the other algorithms performed similarly. »

Teng et al, Genome Biology, 2016 &

« It is particularly noteworthy that Salmon, which (like Sailfish and Kallisto) bypasses traditional alignment and thereby quantifies a single sample in a matter of minutes, had a comparable performance to Cufflinks and RSEM. Importantly, we confirmed these results using a variety of assays on both empirical and simulated data. »

Germain et al, Nucleic Acid Research, 2016

Good performances may not hold true for all the data



« We have found that alignment-based tools were more accurate in quantifying lowly-expressed or small genes. »

Wu et al, BMC Genomics, 2018

Where the differences come from?

1. Alignement vs pseudo-alignment

2. Genome reference vs transcriptome reference see Srivastava et al, 2020 2

Where the differences come from?

1. Alignement vs pseudo-alignment

2. Genome reference vs transcriptome reference see Srivastava et al, 2020 2

3. Quantification method

How to quantify multi-mapped reads?

When a read maps at multiple loci, what transcript/gene should be counted?

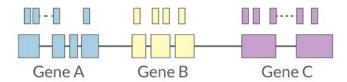
See Deschamps-Francoeur et al, 2020 (thanks Pierre!)

- None
 (eg. HTSeq-count, STAR genecount, featureCounts)
- Split counts evenly
 (eg. Cufflinks, featureCounts (with an option))
- Rescue based on single mapping reads (eg. Cufflinks (with an option))
- Expectation maximization (eg. RSEM, Salmon, Kallisto)

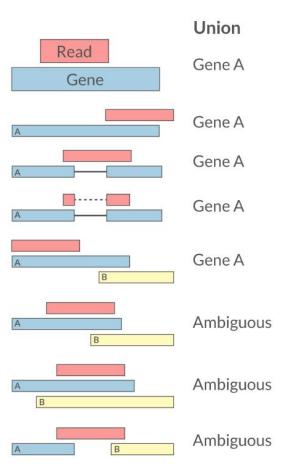
Quantification - assignment and limits

Quantification • Counts

- Read counts = gene expression
- Reads can be quantified on any feature (gene, transcript, exon etc)
- Intersection on gene models
- Gene/Transcript level



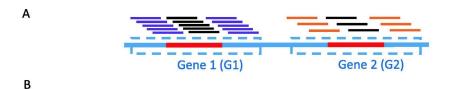
♣ featureCounts, HTSeq



NB

SciLifeLab

Counting gene expression from alignments



Approach to **Read distribution representation** handle Counts multireads G1: 10 reads Ignore G2: 6 reads Count once G1: 18 reads G2: 14 reads per alignment G1: 14 reads Split them G2: 10 reads equally Rescue based G1: 15 reads on uniquely G2: 9 reads mapped reads (n) Expectation-G1: 15 reads maximization G2: 9 reads Read coverage G1: 15 reads based G2: 9 reads methods G1:10 reads G2:6 reads Cluster

EM: counts are not bound to be integers!

Cluster G1/G2:

8 reads

methods

Counting gene expression from alignments

Table 1Computational strategies and methods that handle multi-mapped reads.

Tool	Quantification level	Input	Strandedness can be specified	Count type	Strategy	Paired end	Confidence level	Focus
HTSeq-count	Gene	BAM	Y	Counts	Ignore	Y	N	Long RNA
STAR geneCounts	Gene	Fastq	Y	Counts	Ignore	Y	N	Long RNA
Cufflinks	Transcript	BAM	Y	RPKM	Split equally, Rescue	Y	N	Long RNA
featureCounts	Gene	BAM	Y	Counts	Ignore, count all, split equally	Y	N	Long RNA
СоСо	Gene	BAM	Y	Counts, CPM, TPM	Rescue	Y	N	Small RNA Long RNA
ERANGE	Transcript	BAM	N	RPKM	Rescue	Y	N	Long RNA
EMASE	Transcript	BAM	N	Counts, TPM	EM	Y	N	Long RNA
IsoEM2	Both	SAM	Y	FPKM, TPM	EM	Y	Confidence intervals	Long RNA
Kallisto	Transcript	Fastq	Y	TPM	EM	Y	Bootstrap values	Long RNA
RSEM	Both	Fastq, BAM	Y	Counts, TPM, FPKM	EM	Y	95% credibility intervals	Long RNA
Salmon	Transcript	Fastq	Y	Counts, TPM	EM	Y	Bootstrap values	Long RNA
MMR	N/A	BAM	Y	N/A	Read coverage	Y	N/A	Long RNA
MuMRescueLite	Genomic loci	Custom format	N	Counts	Read coverage	N	N	Short sequence tag
Rcount	Gene	BAM	Y	Counts	Read coverage	N	N	Long RNA
ShortStack	Gene	Fastq, BAM	N	Counts, RPM	Read coverage	N	N	Small RNA
mmquant	Gene	BAM	Y	Counts	Gene Clustering	Y	N	Small RNA Long RNA
SeqCluster	Gene	BAM	N	Counts	Gene clustering	N	N	Small RNA
Fuzzy method	Gene	Custom format	N	Fuzzy counts	Fuzzy sets	N	Fuzzy counts	Small RNA Long RNA
geneQC	Gene	SAM	Y	NA	ML	Y	Mapping uncertainty level	Small RNA Long RNA

How to quantify multi-mapped reads?

When a read maps at multiple loci, what transcript/gene should be counted?

See Deschamps-Francoeur et al, 2020 (thanks Pierre!)

None (eg. HTSeq-count, STAR genecount, featureCounts)

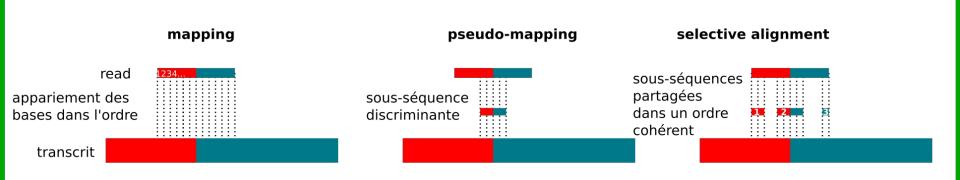
Split counts evenly

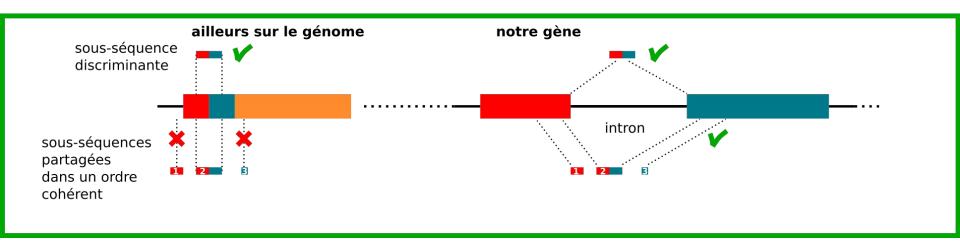
 (eg. Cufflinks, featureCounts (with an option))

 Rescue based on single mapping reads (eg. Cufflinks (with an option))

 Expectation maximization (eg. RSEM, Salmon, Kallisto)

Methods still evolve: Salmon selective alignment





Counting gene expression with Salmon

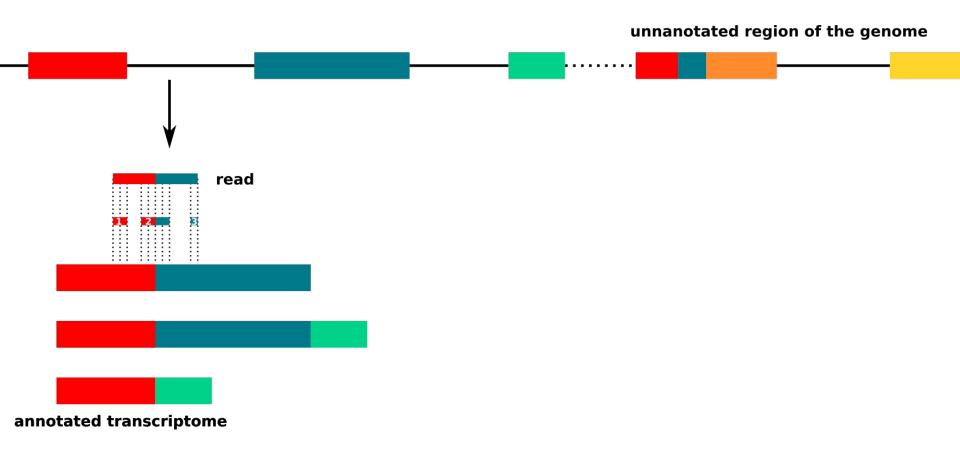
Salmon Selective alignment:

- inspired from long-read mapping techniques
- check that the **order** of shared subsequences is the same in the read and the targeted transcript (*chaining*)
- recent results* suggest that this method combines speed of mapping-free approaches and a quantification precision closer to traditional mapping
- combined with a second idea...

^{*}Alignment and mapping methodology influence transcript abundance estimation, Srivastava et al. 2020

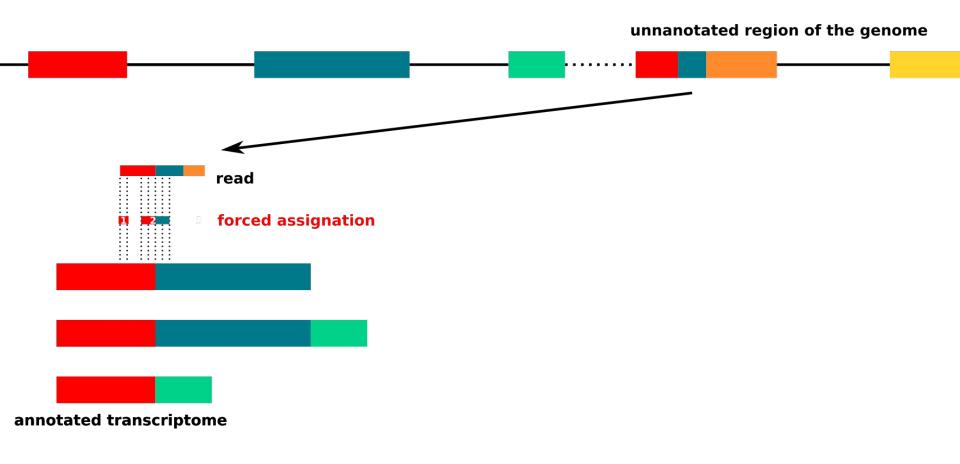
Salmon: using genomic regions as decoys

genome



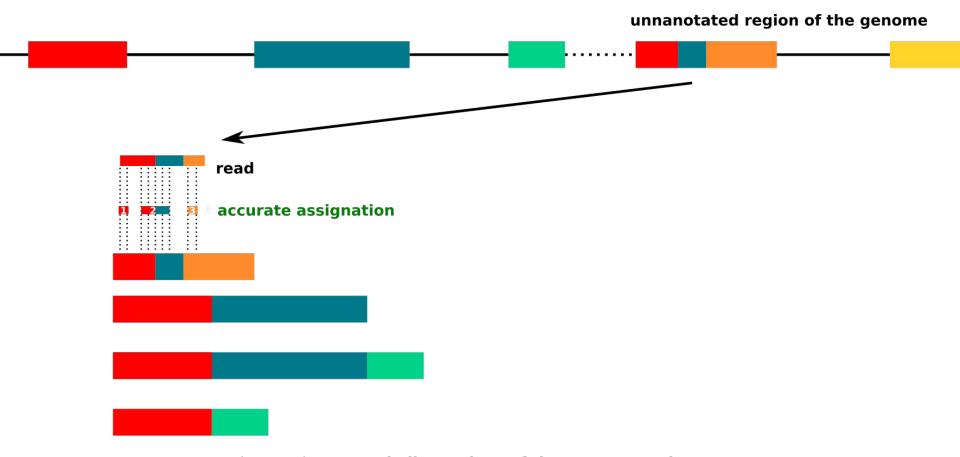
Salmon: using genomic regions as decoys

genome



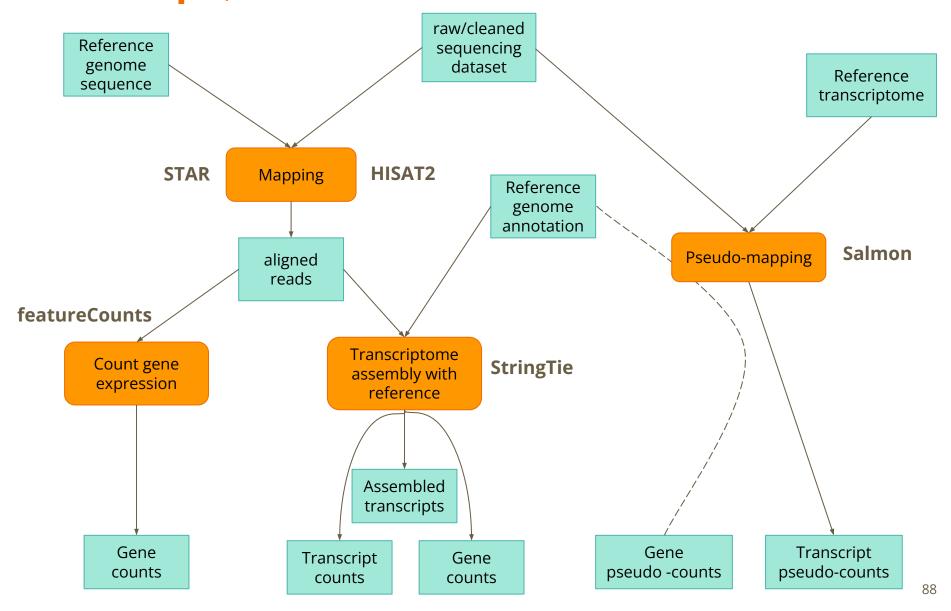
Salmon: using genomic regions as decoys

genome



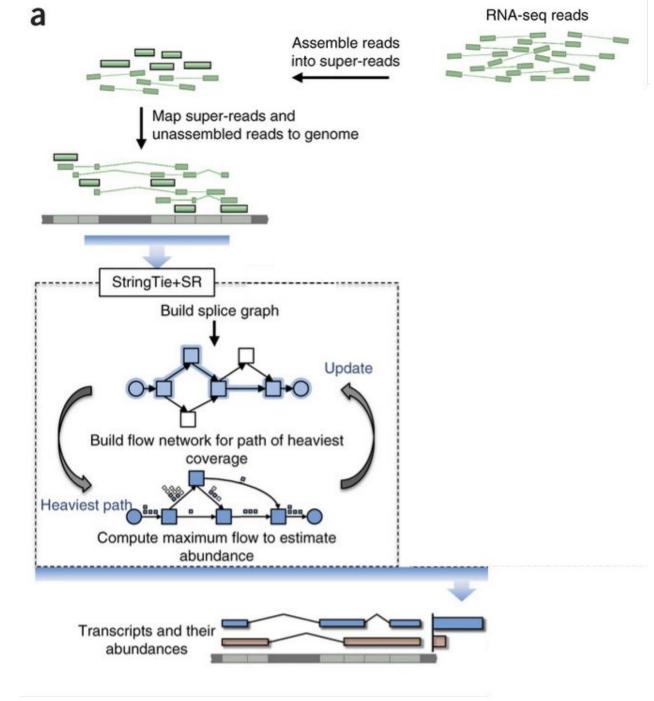
annotated transcriptome + similar regions of the genome as decoys

RNA-seq w/ ref



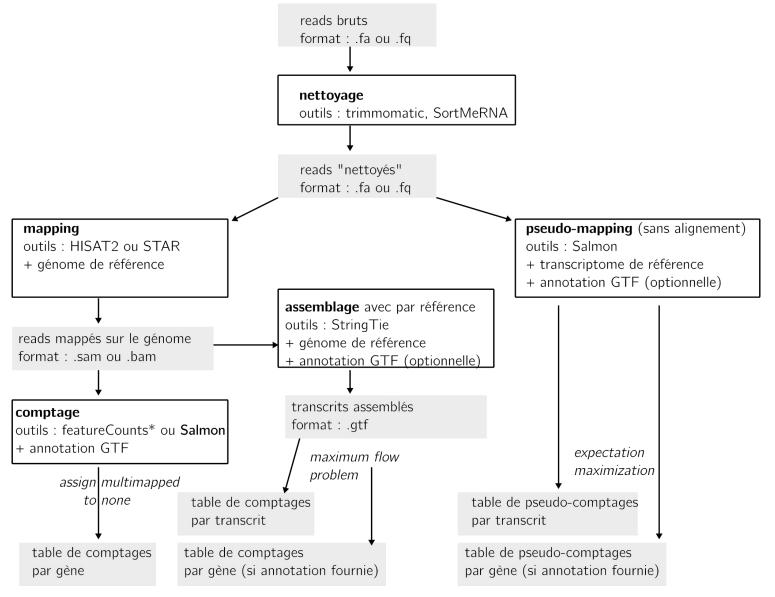
Stringtie

adapted from Pertea et. 15



Practical: Mapping and Quantification

Working with a reference: our achievements



^{*} à vocation pédagogique pour le TP, déconseillé par ailleurs.

Recommended pipeline (as of Oct 2023)

Transcript/Gene quantification with mapping: STAR + Salmon

Mapping-less transcript quantification: Salmon or Kallisto

Transcriptome assembly: HISAT2 + StringTie (+ Ballgown ?)

De novo RNA-seq

De novo approaches

- De novo methods are approaches that are free from a reference for producing results
- Reference-based approaches have limitations as results depends on the quality of the reference
- Sometimes we don't even have a reference
- De novo and reference-based are complementary

Why do we need *de novo* approaches

Aren't references good enough?

- Disease-associated transcripts
- Genetic polymorphism in transcripts
- de novo methods are helping creating tomorrow's references

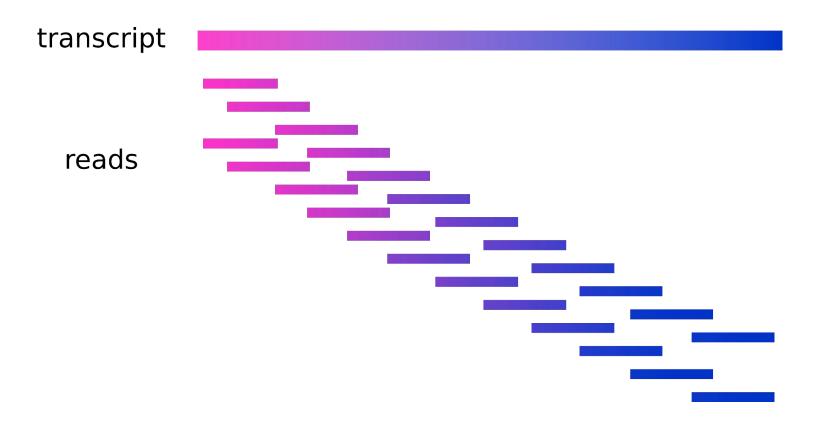
Home About Articles Submission Guidelines

The more novel and specific is your need, the more likely you need new bioinformatics (and *de novo*)

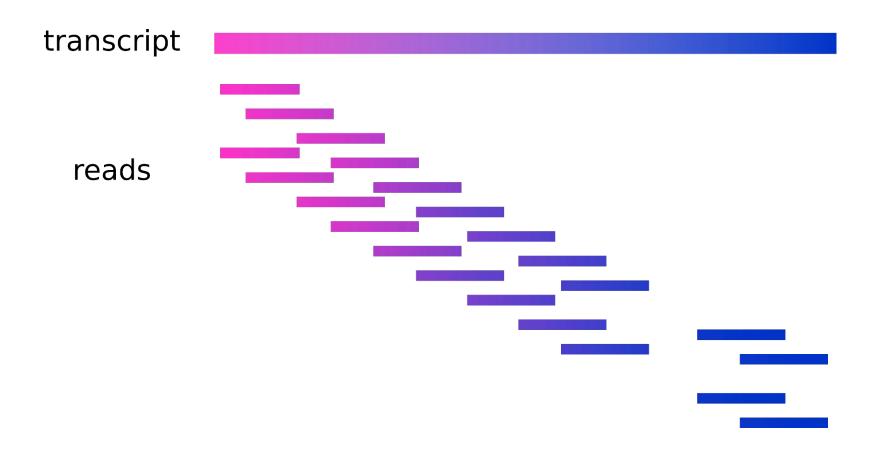
What can be done with *de novo* methods

- transcript assembly + quantification
- genetic polymorphism detection
- alternative transcript detection + quantification

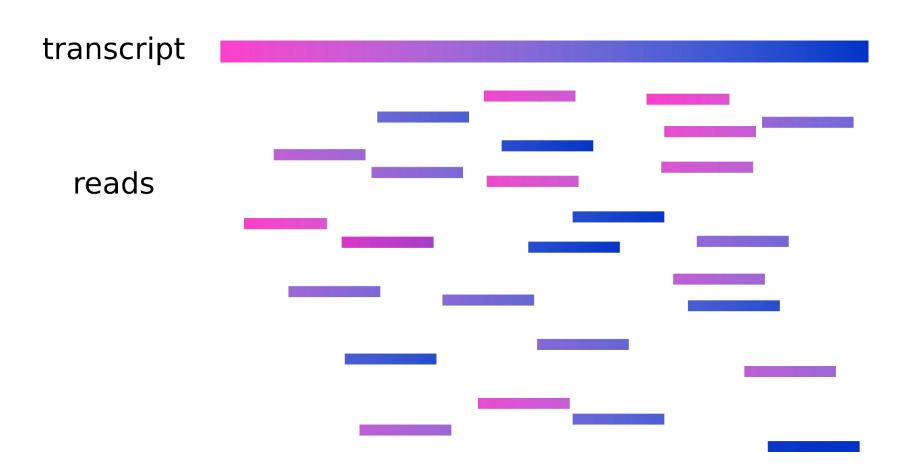
The *de novo* assembly challenge



The *de novo* assembly challenge



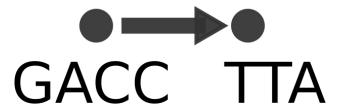
The *de novo* assembly challenge



Assembly recap

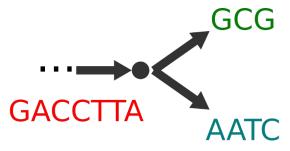
Assembly is like taking a step after another in a maze

One step is a group of nucleotides



Assembly recap

Until you have a choice to make:

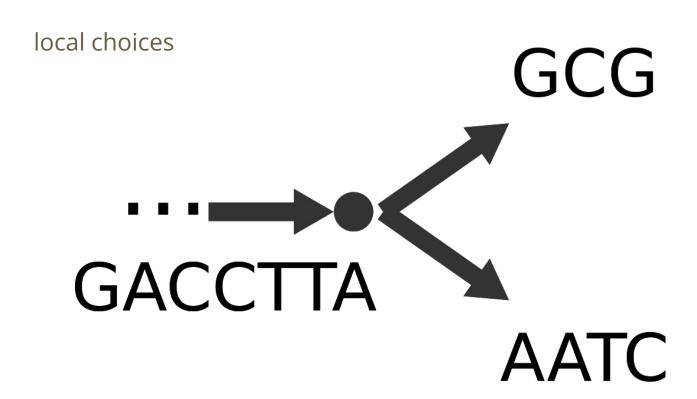


why does this happen? check the reads:

CTTAGCG TTAAATC

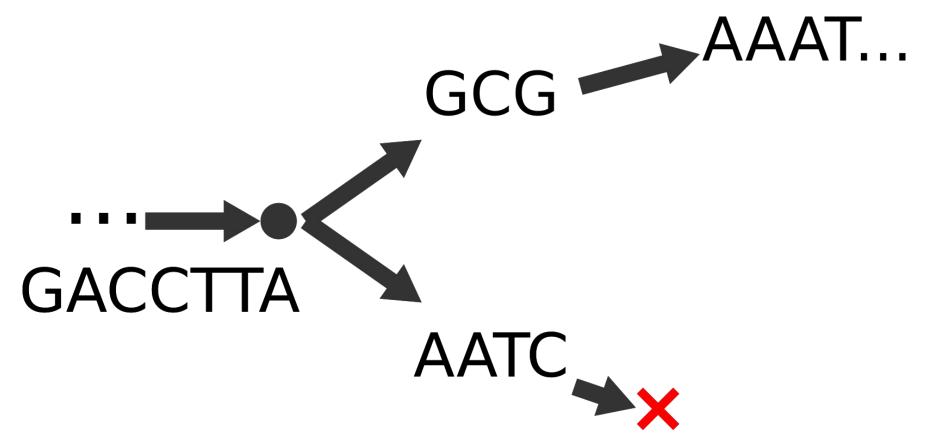
and in the initial molecules, an exon is shared:

Greedy algorithms



Greedy algorithms

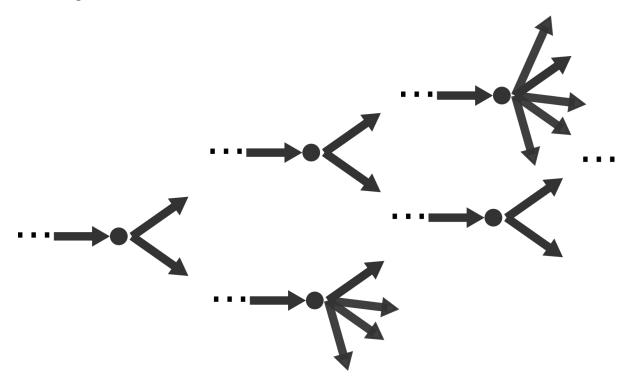
local choices can lead to bad decisions



All vs all overlaps algorithms

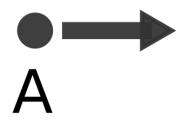
Have a global view of the possibilities in the "maze"

Ideal but... quadratic



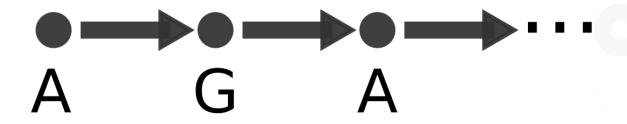
de Bruijn graph assembly

With de Bruijn graphs we walk in the maze nucleotide by nucleotide:



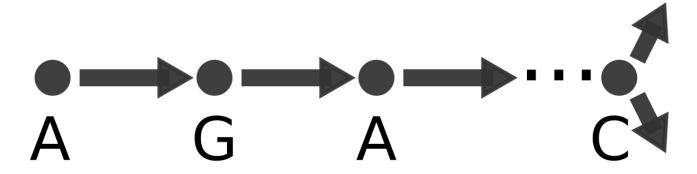
de Bruijn graph assembly

Your next step must correspond to the nucleotide that comes after in the original transcript



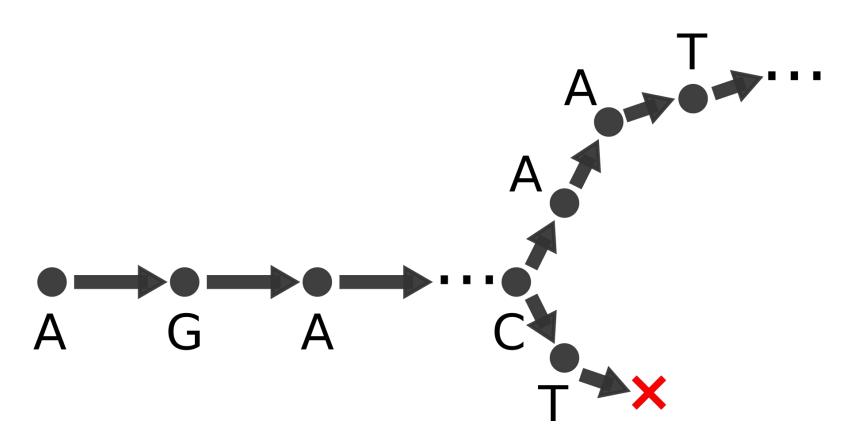
Result: concatenation of the nucleotides (AGA...)

de Bruijn graph assembly



de Bruijn graph assembly

Some dead ends and other bifurcations can be seen



de Bruijn graph assembly

Store the "maze" in a graph structure (de Bruijn graph)

- helps with local choices
- cost efficient (RAM & runtime)

de Bruijn graph in practice: k-mers

k-mers: why don't we use reads

$$k\text{-mers }(k=5) \overset{A}{\overset{}{\square}} \overset{C}{\overset{G}} \overset{C}{\overset{G}} \overset{C}{\overset{G}} \overset{A}{\overset{G}} \overset{G}{\overset{A}} \overset{A}{\overset{G}} \overset{A}{\overset{A}{\overset{G}}} \overset{A}{\overset{G}} \overset{A}{\overset{A}} \overset{A}{\overset{G}} \overset{A}{\overset{A}} \overset{A}{\overset{A}}{\overset{A}} \overset{A}{\overset{A}} \overset{A}} \overset{A}{\overset{A}} \overset{A}} \overset{A}{\overset{A}} \overset{A}{\overset{A}} \overset{A}{\overset{A}} \overset{A}{\overset{A}}$$

result: ATCGCCA, CCAGA

de Bruijn graph in practice: k-mers

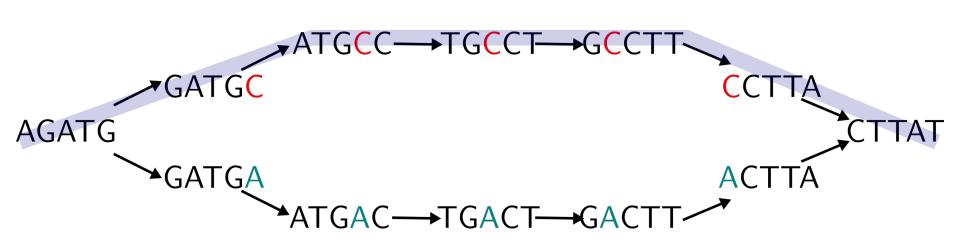
result: ATCGCCAGA

de Bruijn graph in practice: k-mers

k-mers help bridging the assembly
they are key elements to work with the dBG
in practice implementations allow using several k sizes
tradeoff larger k: more conservative /smaller k: more
gaps filled in the graph

Path in the De Bruijn graph

De Bruijn graph



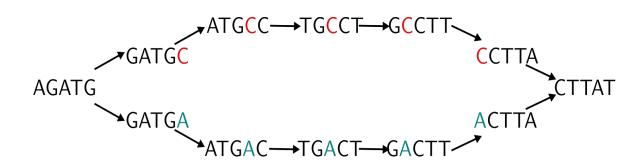
assembly: a set of gap-less sequences extracted from paths covering the graph (after some modifications to the graph...)

Vocabulary: bubbles/bulges

AGATGCCTTAT

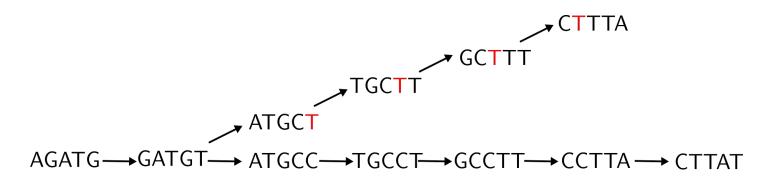
 $AGATG \longrightarrow GATGC \longrightarrow ATGCC \longrightarrow TGCCT \longrightarrow GCCTTA \longrightarrow CTTAT$

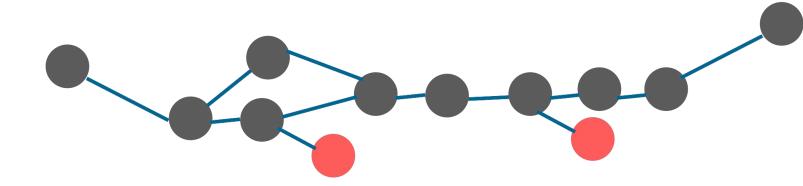
AGATGCCTTAT AGATGACTTAT



Vocabulary: tips/dead ends

reads
AGATGCCTTA
AGATGCTTTA
AGATGCCTTA
GATGCCTTAT
GATGCCTTAT

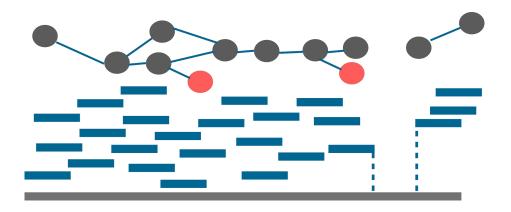


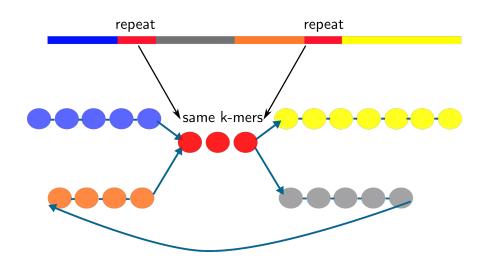


An assembly generally is

- smaller than the reference,
- fragmented
- missing reads create gaps

- repeats fragment assemblies and reduce total size





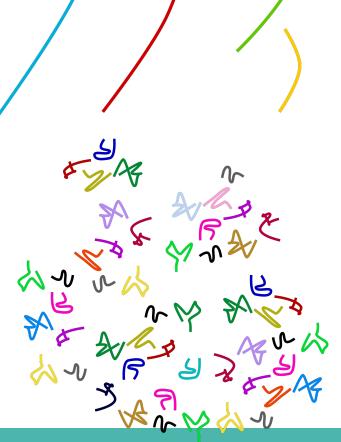
Contrasting genome and transcriptome assemblies

genome

- -uniform coverage
- -single contig per locus
- -double stranded
- -theory: one massive graph per chromosome
- -practice: repeats aggregate, contigs smaller than chromosomes

transcriptome

- -exponentially distributed coverage
- -multiple contigs per locus
- -strand specific
- theory: thousands of small disjoint graphs, one per gene
- -practice: gene families, ALU & TE, low covered

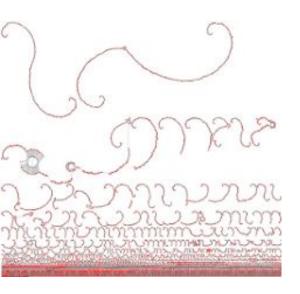


Contrasting genome and transcriptome assemblies

Despite these differences, DNA-seq assembly methods apply:

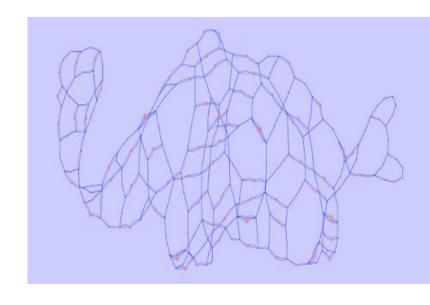
- Construct a de Bruijn graph (same as DNA)
- Output contigs (same as DNA)
- Allow to re-use the same contig in many different transcripts (new part)

Real instance graphs



graph from shallow covered Drosophila dataset

zoomed-in bubbles (+ tips)



gene family

Credit: ERABLE team (Lyon)

There is no single solution for assembly...

Conclusions of the GAGE benchmark: in terms of assembly quality, there is no single best assembler. Applies to RNA-seq.

Main tools:

- -TransAbyss, Robertson et al. Nat. Met 2010 https://github.com/bcgsc/transabyss
- -Bridger, Chang et al. *Genome Biol.* 2015 https://github.com/fmaguire/Bridger_Assembler
- -**SOAPdenovo-Trans**, Xie et al. *Bioinformatics* 2014 https://github.com/aquaskyline/SOAPdenovo2
- -**Trinity**, Grabherr et al. *Nat. Biotechnol.* 2011 https://github.com/trinityrnaseq/trinityrnaseq/wiki
- rnaSPAdes, Bushmanov et al. GigaScience 2019 http://cab.spbu.ru/software/spades/

The main building blocks in theory

- 1. (optional) correct the reads (for instance BayesHammer in rnaSPAdes)
- 2. build a graph from the reads (remove k-mers seen once)
- 3. remove likely sequencing errors (tips)
- 4. remove known patterns (bubbles)
- 5. return simple paths (i.e. contigs), **allow nodes to be used several times**

Warning: what's in the paper is different than what's in the implementation...

2. Assembly in SPAdes: An Outline

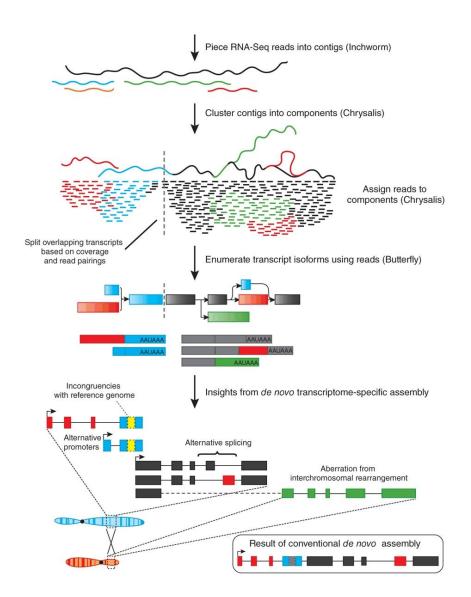
Below we outline the four stages of SPAdes, which deal with issues that are particularly troublesome in SCS: sequencing errors; non-uniform coverage; insert size variation; and chimeric reads and bireads:

- (1) Stage 1 (assembly graph construction) is addressed by every NGS assembler and is often referred to as de Bruijn graph simplification (e.g., bulge/bubble removal in EULER/Velvet). We propose a new approach to assembly graph construction that uses the multisized de Bruijn graph, implements new bulge/tip removal algorithms, detects and removes chimeric reads, aggregates biread information into distance histograms, and allows one to backtrack the performed graph operations.
- (2) Stage 2 (k-bimer adjustment) derives accurate distance estimates between k-mers in the genome (edges in the assembly graph) using joint analysis of distance histograms and paths in the assembly graph.

Trinity assembler

- Inchworm de Bruijn graph construction, part 1
- Chrysalis de Bruijn graph construction, part 2
- Butterfly Graph traversal using reads, isoforms enumeration

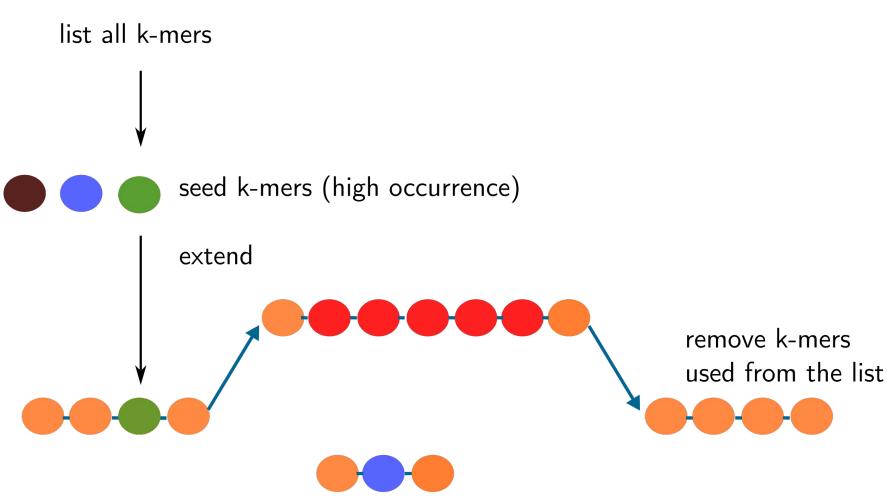
Trinity overall



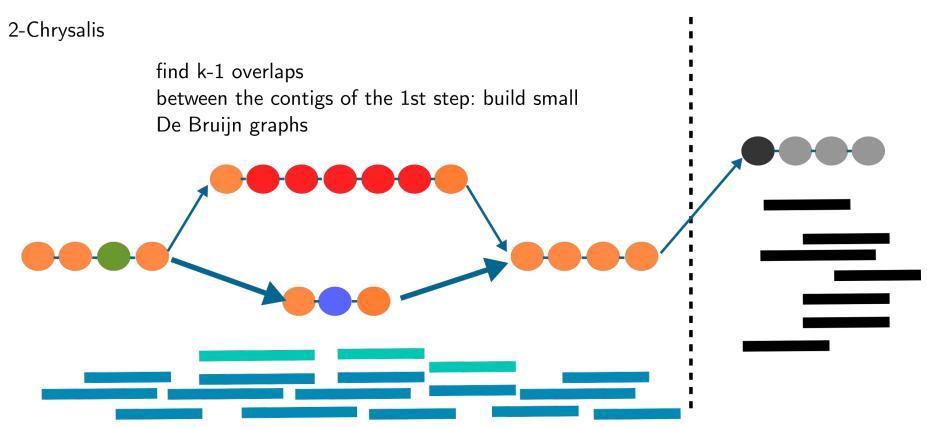
Iyer et al, Nature Biotech., 2011

Trinity: detail

1-Inchworm

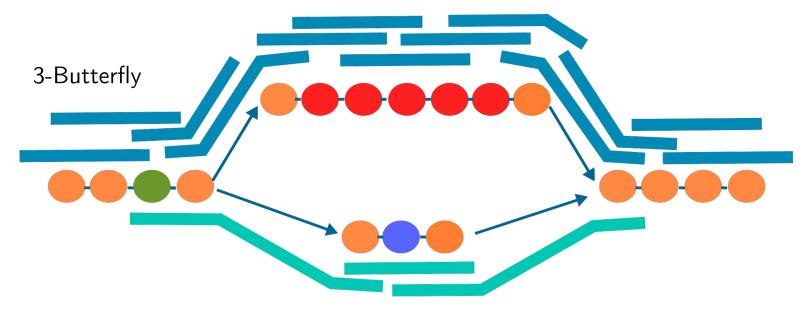


Trinity: detail

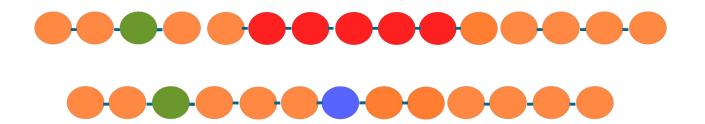


use read mapping information to separate clusters

Trinity: detail



output read-coherent isoforms



Trinity output

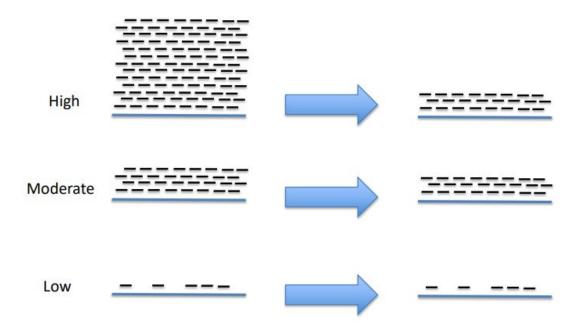
-path=[31015:0-148 23018:149-246]") indicates the path traversed in the Trinity de Bruijn graph to construct that transcript

Normalization effects on assembly (example of Trinity)

From Brian

In silico normalization of reads

Haas

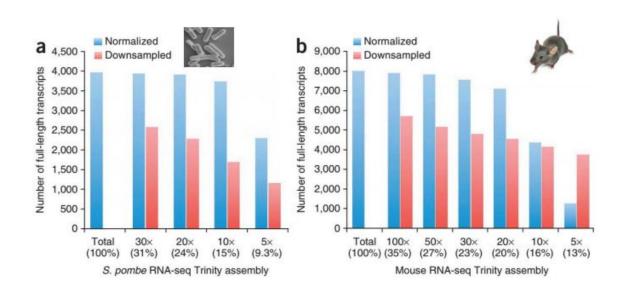


Normalization effects on assembly (example of Trinity)

Impact of Normalization on *De novo* Full-length
Transcript Reconstruction

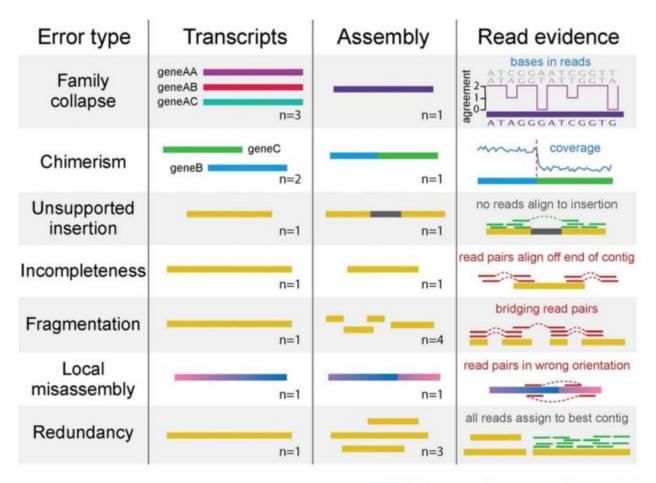
From Brian

Haas



Largely retain full-length reconstruction, but use less RAM and assemble much faster.

Errors made by assemblers



Smith-Unna et al. Genome Research, 2016

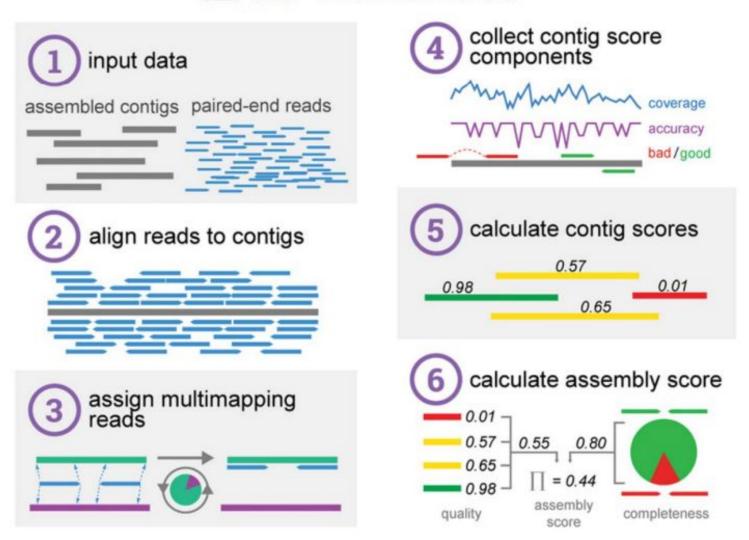
RNA-seq Assembly quality assessment

- N50 is not very useful.
 - unreasonable isoform annotation for long transcripts drives higher N50
 - very sensitive reconstruction for short lowly expressed transcripts leads to lower N50

Reference-free evaluation must be preferred, based on **read remapping** Main tools:

- rnaQuast http://cab.spbu.ru/software/rnaquast/
- Transrate http://hibberdlab.com/transrate/

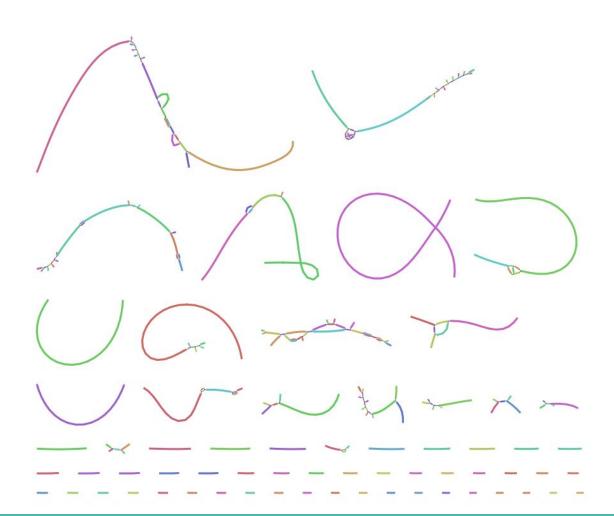
TransRate



Smith-Unna et al. Genome Research, 2016

Visualization: Bandage

https://rrwick.github.io/Bandage/



Meta-practices

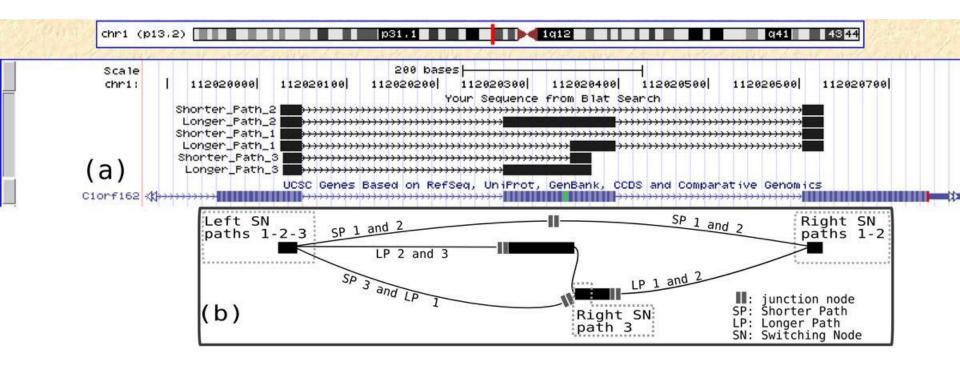
- 1- Read surveys, Twitter, blogs
- 2. Pick two assemblers
- 3. Run each assembler at least two times (different parameters)
- 4. Compare assemblies
- 5. If possible, visualize them

An assembly is not the absolute truth, it is a mostly complete, generally fragmented and mostly accurate hypothesis

Currently, Trinity, RNASpades and TransAbyss could be pointed as the most trustworthy/qualitative (for known species. Not one tool for all issues).

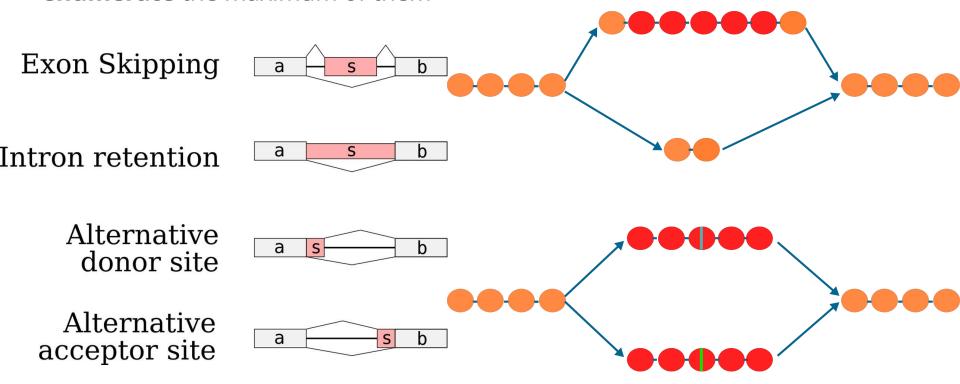
Practical: Trinity assembly

Assembly does not output all variants

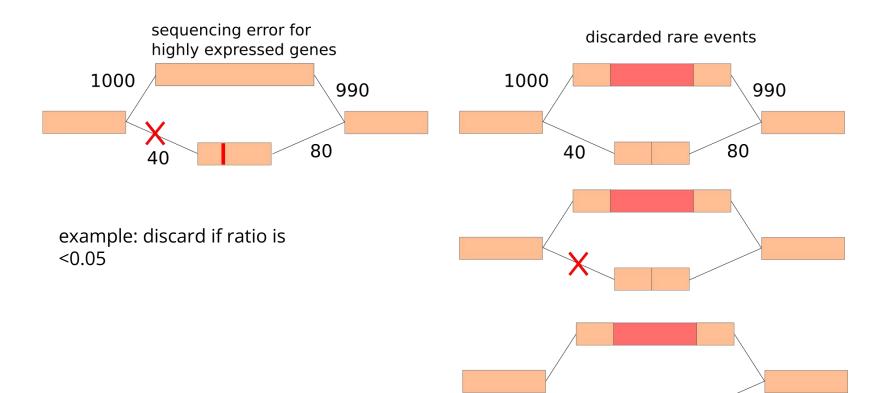


KISSPLICE

Goal: instead of assembling full-length transcripts, KISSPLICE (Sacomoto et al. 2012) focuses on assembling ONLY the **bubbles** that contain events and **enumerate** the maximum of them



KISSPLICE: graph cleaning + local assembly



Variants in local assembly

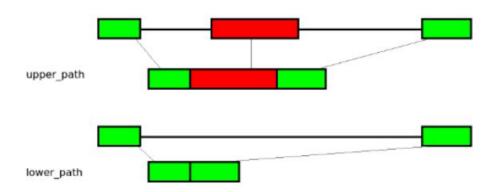


KISSPLICE's output

>bcc_89|Cycle_0|Type_1|upper_path_length_122|C1_0|C2_1|C3_2|C4_1|rank_0.55097

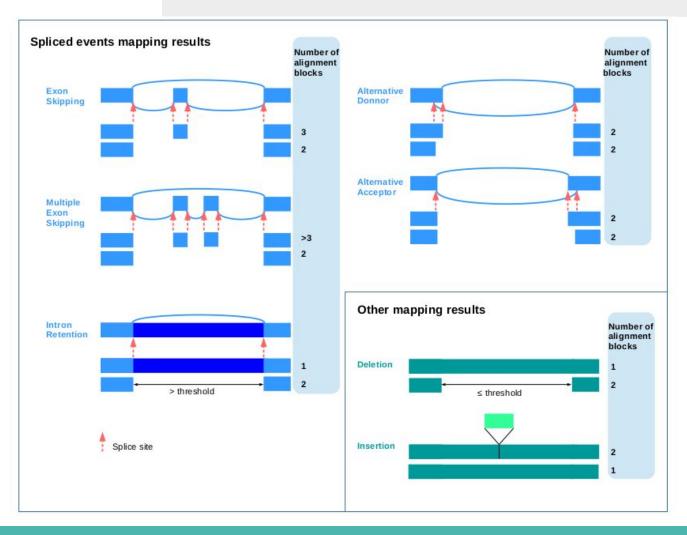
CCCTGATGGCCTCAGAGGAGGAGTAATGTGGGGACCTAGAGGAGGAGGTGAAAATTGTTACCAACAACTTGAAATCCCTGGAGGCCCAGGCGGACAAGTATCCCACAAAGAAGATAAATA
>bcc_89|Cycle_0|Type_1|lower_path_length_46|C1_0|C2_0|C3_2|C4_6|rank_0.55097

CCCTGATGGCCTCAGAGGAGGAGTATTCCACCAAAGAAGATAAATA



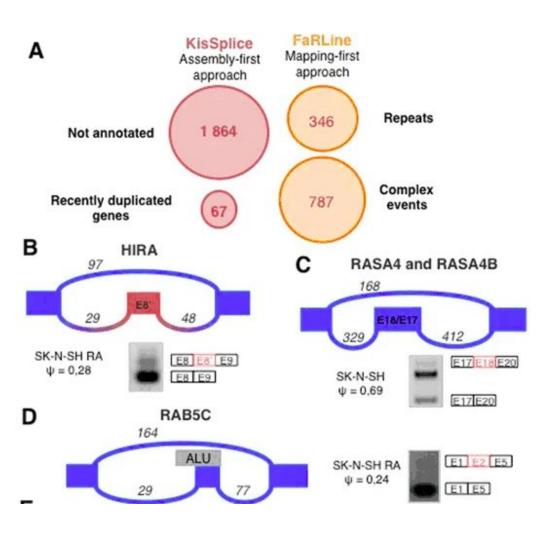
Post-processings

What do I have?	What I can use	
I have a reference genome		differential analysis: kissDE
I have no reference genome	KisSplice2refTranscriptome	



for quantification only see de-Kupl Audoux et al. 2017

KISSPLICE case studies



Discover splicing events:

Benoit Pilven et al. 2018

Farline: mapping

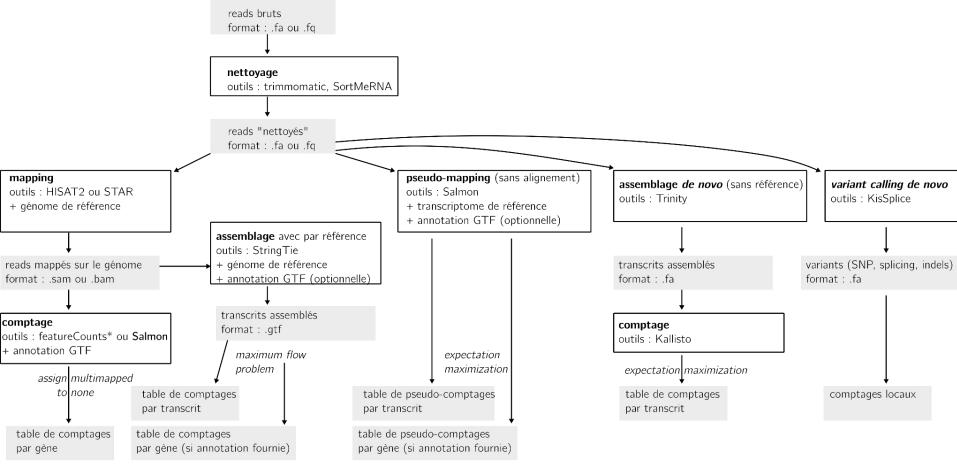
B found only by Kissplice (not annotated)

C found only by Kissplice (paralog)

D found only by mapping (Alu repeat)

Practical: Kissplice

Our achievements (reference and *de novo*)



^{*} à vocation pédagogique pour le TP, déconseillé par ailleurs.

Long reads : the future present of transcriptomics

Long reads overview

Possibilities & pipelines

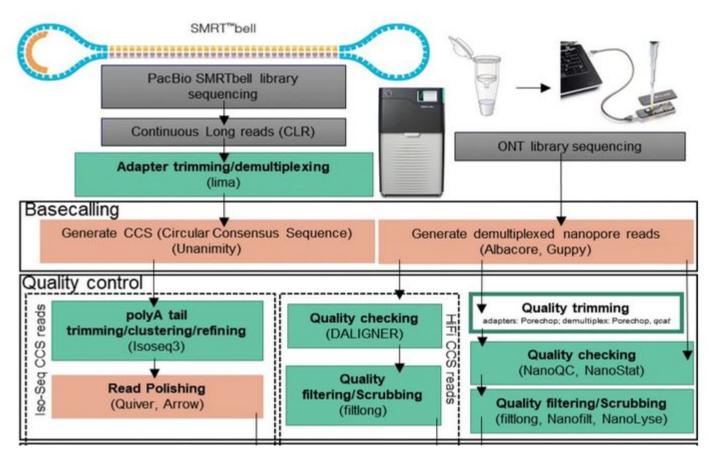
Limitations of short reads

- recent studies suggest that our reference transcriptomes miss isoforms
- in particular in the context of alternative splicing
- de novo assembly of species with unknown/hardly known transcriptomes is still a challenge
- the mandatory cDNA step in short reads protocols implies bias

Long reads technologies

- sequencing of long (>10kb) molecules is possible
 - ☐ full RNAs!
- with a higher (~1-5% to 14%) error rate
- error profile is different from SR: indels in homopolymers
- some allow to sequence directly RNA (reduced bias, epitranscriptomics)

Long reads technologies



from Shanika L. Amarasinghe et al. Genome Biol. 2020

Pacific Biosciences (Pacbio)

- in the case of RNA, a fragment is **read several times** and a consensus is computed
- read length limited by the longevity of the polymerase
- circular consensus sequence quality = f(fragment length, pollongevity)
- 4 passes: 1% error (0.1% reached after 9 passes)
- bias for indels in homopolymers

Pacific Biosciences (Pacbio)

- the protocol is better suited for studying isoform identification only (not quantification)
 - initial overrepresentation of shorter molecules lead to size selection which introduces a bias
 - mitigation solutions still in progress

Oxford Nanopore technologies (ONT)

- no limit to read length
- the fragment is read only once in the pore
- read quality depends on the speed of the fragment through the pore
 - **quality decreases in the late stages** of sequencing
- error rate >5%
- bias for indels in homopolymers

Oxford Nanopore technologies (ONT)

- ☐ 1D sequencing protocol : **single pass** of strands
- ☐ (1D² protocol: sequence the **complementary strand immediately after** the forward strand and compute a consensus)
- accuracy over homopolymers is in progress (from R10 chemistry)

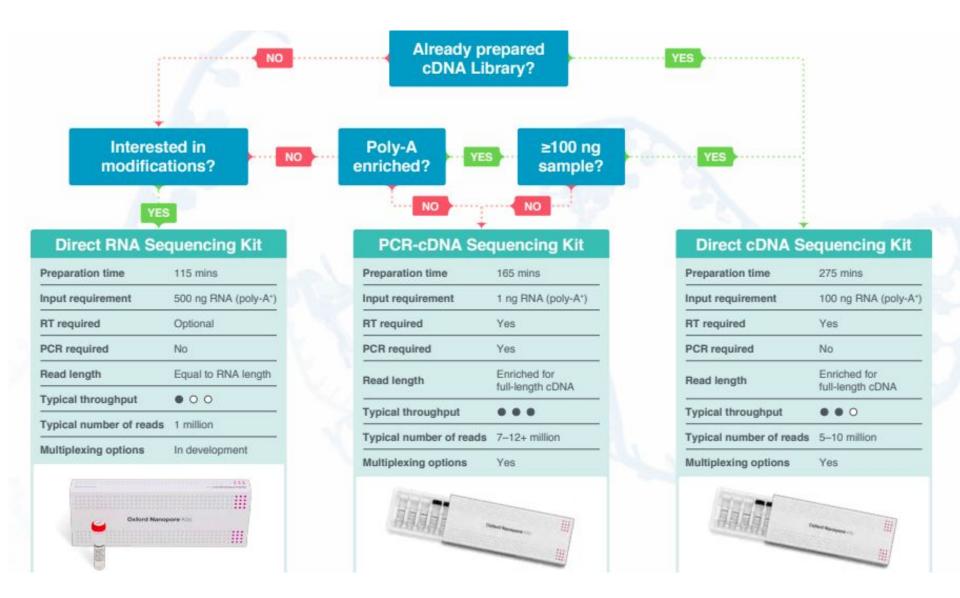
Oxford Nanopore technologies (ONT)'s RNA direct

Methods based on reverse transcription:

- Template switching and artifactual splicing
- Loss of strandedness information
- Loss of base modifications
- Propagation of error due to PCR

Direct RNA

- no bias due to PCR
- possible to study some RNA modifications
- as of today not adequate for quantification (too much material is required)



material from Oxford Nanopore

What has been studied with long reads so far

Near mature:

Quantification of already known genes and isoforms

Quantification of novel isoforms from known genes

☐ Transcript reconstruction (assembly) based on a reference

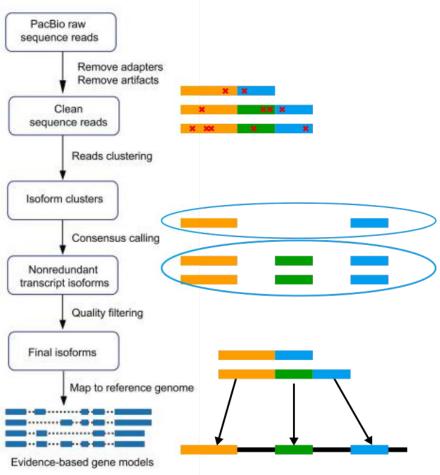
What has been studied with long reads so far

Exploratory:

- RNA of paralogous genes (Dougherty et al., 2018, Chen et al., 2017)
- ☐ Fusion transcripts (Nattestad et al., 2018).
- □ Allele-specific expression (Tilgner et al., 2014), avelier et al., 2015).

Informatics pipeline

Spirit of most analysis pipelines



reads comparison all vs all

clusters: isoform detection compute consensus

report non redundant polished transcript sequences

alignment to genome (Minimap2, GraphMap2, GMAP...)

report genes/isoforms quantify

adapted from Gordon et al. 2015

Isoform detection: PacBio's Iso-Seq3 + ToFU/Cupcake

https://github.com/ylipacbio/lsoSeq3/

- will tend to **merge alternative transcripts** (heavily depends on the reference quality)
- computationally expensive
- tailored to Pacbio reads only
- scripts for exon-junction description and quantification

Alternative isoforms detection pipelines

Specialized for Pacbio

- SQANTI (reference genome, gff)
- ☐ ToFu (reference genome & limited *de novo*)
- ☐ TAPIS (reference genome)
- □ IsoCon (*de novo* correction and detection of different transcripts at the base level, targeted data)

Specialized for Nanopore

☐ FLAIR (reference genome)

Technology agnostic

- TALON (input = alignments to ref)
- MANDALORION
- ☐ TrackCluster (*de novo*)

Pipelines focused on quantification

- Developed by Nanopore (based on alignment + Salmon) https://github.com/nanoporetech/pipeline-transcriptome-de
- LIQA (truncated reads treated using an EM algorithm)

Application example

Front Genet. 2021; 12: 683408.

Published online 2021 Jul 15. doi: 10.3389/fgene.2021.683408

PMCID: PMC8321248

PMID: 34335690

PacBio Iso-Seq Improves the Rainbow Trout Genome Annotation and Identifies Alternative Splicing Associated With Economically Important Phenotypes

Ali Ali, 1 Gary H. Thorgaard, 2 and Mohamed Salem 1,*

Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome

Robin-Lee Troskie, Yohaann Jafrani, Tim R. Mercer, Adam D. Ewing ☑, Geoffrey J. Faulkner ☑ & Seth W. Cheetham ☑

Genome Biology 22, Article number: 146 (2021) | Cite this article

2795 Accesses 2 Citations 31 Altmetric Metrics

Long reads miscellaneous

- Specific spliced alignment tools start to emerge (uLTRA, Sahlin et al. 2021)
- Cleaning for spliced sites (with ref) TranscriptClean , FLAIR
- Reference-free correction might become a standard in the years to come (isONcorrect, Sahlin et al. 2021) (/!\ generally, do not use reference free correction methods tailored for genomic long reads)
- Assembly using short+long reads+ref: StringTie2
- De novo assembly (RNA-Bloom, Nip al. 2023)

A website that lists long reads tools: https://long-read-tools.org/table.html

Next challenges with long reads

- guarantee full-length RNA or cDNA libraries
- sequence all different RNAs (not only poly-A)
- allele-specific transcripts
- acquire knowledge about 3' and 5' ends, polyA tails (homopolymers)
- new steps toward full de novo pipelines

What was not viewed during this session

- -bacterial RNA
- -genome-guided assembly
- -metatranscriptomics
- -single cell RNA
- -tools specialized for ncRNAs, smallRNAs
- -tools specialized for fusion transcripts
- -transcript annotation (https://busco.ezlab.org/ for instance)

- ...

-up next: differential study (statistics for RNA-seq)