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Render unto Caesar

This course was originally developed by Hugo Varet and the {' INSTITUT

biostatistics team from the Pasteur Institute Bioinfo & Biostat Hub. PASTEUR
I %e) .

It was then .aQapfted .fo.r the EBAII annual C)V|@Sqﬂ 6 ) E_pb I"I Inserm

national training in bioinformatic oo s scences go g ince navionate (N EET e

It was again adapted for the Bilille RNA-seq training, incorporating additional slides from
existing RNA-seq biostat courses by Guillemette Marot (PU ULille, METRICS)

A non-exhaustive list of past and current authors include:

- Hugo Varet

- Stevenn Volant

- Elise Jacquemet

- Guillemette Marot

- Pierre Pericard

- and probably many more

|
2 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 ‘) I ‘ I ‘ | G




Main RNA-Seq steps

Tissuel/cells RNA cDNA Library

Designing the ~F
experiment and the ——p :;; I — >
sequencing & gf

log fold change

1e-01 1e+01 1e+03 1e+05

mean expression

Differential Bioinformatics Sequencing
analysis
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Citation

"To consult a statistician after an experiment is finished is often merely to
ask him to conduct a post-mortem examination. He can perhaps say what
the experiment died of."

Ronald A. Fisher, Indian Statistical Congress, 1938, vol. 4, p 17
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Citation

“While a good design does not guarantee a successful experiment, a suitably
bad design guarantees a failed experiment’

Kathleen Kerr, Atelier Inserm 145, 2003
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Vocabulary

Design file:
Samples
ReplicateA-1
ReplicateA-2
ReplicateB-1
ReplicateB-2
Example:
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id

VariableV

levelA
levelA
levelB
levelB

WT-1

WT-2
WT-3
KO-1
KO-2
KO-3

strain
WT
WT
WT
KO
KO
KO

FactorF

biologicalConditionX
biologicalConditionY
biologicalConditionX

biologicalConditionY

day
dl
d2
d3
dl
d2
d3
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Statistical modeling

Goal of an experiment: address one biological question

Result of an experiment: many numerical values

Statistical modeling consists in using a mathematical formula
involving:
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Experimental conditions X
Numerical values measured Y
Parameters B linking X' and Y (to be estimated), e.g.:
Y~XB+¢
Some hypotheses on the data variability/law, e.g.:
¢ ~ Gaussian(0, 0?)
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Starting point of the differential analysis

genel
gene2
gene3
gene4
gene5
geneo6
gene’
gene8
gene?9
genell
genell
genel2
genel3

geneN

TO-1

151
142
157
275

10

12
269
10065
651
118

18

TO-2

131
134
147
249
5

0

7
16
20
262
9593
566
116

31

TO-3

183
153
166
342
2

1

3
10
24
379
11955
819
150

39

T4-1 T4-2

31 35
650 629
7 10
70 44
0 0

0 1

0 0
28 12
14 84
112 132
4076 3739
101 86
18 24
4 4

T4-3

44
7183
20
91

10
77
138
4137
74
42

T8-1

19
136

715

NS
10
44
2736
977
15

T8-2

31
241
10
64

33
10
33
3311
87

T8-3

18
151

62

23

48
2749
96

Goal: find genes differentially expressed between biological conditions
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Gene- vs transcript-level analysis

Differential Gene Differential Transcript Differential Transcript
Expression (DGE) ) Expression (DTE) ) Usage (DTU)

Expression
Expression
Expression

Condition 1  Condition 2 Condition 1  Condition 2 Condition 1  Condition 2
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Outline

1. Introduction

Designing the experiment
Description/exploration
Normalization

Modeling

o a0 K~ W N

SARTools
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Why an experimental design?

To control the variability during the experiment in order to be able to
address the biological question:

1. What is the biological question?

2. How to estimate the associated biological variabilities?

3. How to control the technical variabilities (day, lane, run, etc.)?

Biological or technical uncontrolled effects could:
e Hide/cancel the biological effect of interest
e \Wrongly increase the biological effect of interest

“Ensure that the right type of data, and enough of it, is available to answer
the questions of interest as clearly and efficiently as possible”

http://www.stats.gla.ac.uk/steps/glossary/anova.html#expdes
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Why an experimental design?

PLOS COMPUTATIONAL BIOLOGY

& OPEN ACCESS

EDITORIAL

Ten simple rules for providing effective bioinformatics
research support

Judit Kumuthini [&], Michael Chimenti, Sven Nahnsen, Alexander Peltzer, Rebone Meraba, Ross McFadyen, Gordon Wells,

Deanne Taylor, Mark Maienschein-Cline, Jian-Liang Li, Jyothi Thimmapuram, Radha Murthy-Karuturi, Lyndon Zass

Published: March 26, 2020 « htips://doi.org/10.1371/journal.pcbi.1007531

“A good experimental design starts with a well-defined hypothesis [...]. The
experimental design should aim to reduce the types and sources of
variability, increase the generalizability of the experiment, and make it
replicable and reusable. It is both easier and more cost efficient to identify
and correct experimental design issues ahead of time than to address
deficiencies thereafter. Thus, discussion between data-generating
researchers and bioinformaticians is highly desirable and should occur
as early as possible during project development and experimental design.”
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Garbage in - garbage out

DATA MODEL RESULT

[Unaad 1]

Nl Tad |

1]1i
13 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 |) I ‘ I | ‘ G




Basic comparison

Transcriptome differences between Cystic Fibrosis (CF) patients and healthy
people: MRNA sequencing of lung cells.
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id
hl
h2
h3
cfl
cf?
ct3

state
healthy
healthy
healthy
CF

CF

CF
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Paired samples

Transcriptome differences between Cystic Fibrosis (CF) patients and healthy
people: MRNA sequencing of lung cells.

id
hl
h2
h3
cfl
cf?
cf3
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state
healthy
healthy
healthy
CF

CF

CF

RNA extraction date

June
June
June
June
June

June

12,
ZOth,
25th,
12th,
Zoth,
25th,

2019
2019
2019
2019
2019
2019
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Paired samples

RNA-Seq of both lung and skin cells from three Cystic Fibrosis (CF) patients.

id state tissue patient
cfl-s CF skin cfl
cf2-s CF skin cf?
cf3-s CF skin cf3
cfl-1 CF lung cfl
cf2-1 CF lung cf?

cft3-1 CF lung ct3

|
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Time course experiment

New treatment T applied to cultures of lung cells from 3 Cystic Fibrosis (CF)
patients. Study of the initial transcriptome and after 4h and 8h of treatment.

id

cfl-0
ct2-0
ct3-0
cfl-4
cft?2-4
cf3-4
cfl-8
cf2-8
cf3-8
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state
CF
CF
CF
CF
CF
CF
CF
CF
CF

time

Oh
Oh
Oh
4h
4h
4h
8h
8h
8h

patient
cfl
cf?
cf3
ctfl
cf?
cf3
cfl
cf?
cf3
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On the laboratory bench...

Time Oh
4

Sample 1 @

Sample 2 @
Sample 3 @
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On the laboratory bench...

Time Oh
Sample 1 @
Sample 2 @
Sample 3 @

Time 24h

> @ Sample 4

> @ Sample 5

4

> @ Sample 6
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On the laboratory bench...

Time Oh Time 24h
Sample 1
Sample 2
Sample 3
Sample 4 -
Sample 5 -
Sample 6 >

|
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Impact on the statistical model

600 ®
@®
500
Q 400 ]
3
o ®
7]
= 300 ®
>
@)
@)
200
100 ®
o
Oh 24h
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Impact on the statistical model

600 o
2
500 -
O
- 400 -
S A
(@®)]
(V)]
£ 300 - A
-
@)
O
200
100 - °
[T
oh 24h

Replicate/patient/batch... effects can be included as blocking covariates
alongside the factor of interest in the statistical model.

|
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Impact on the statistical model

600 / L
L 2

500

HAN

o

o
I

‘k’————”—————,—’l‘

Counts gene G
2
|

200

100 /.
[

Oh 24h

Replicate/patient/batch... effects can be included as blocking covariates
alongside the factor of interest in the statistical model.
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Complex design

Effect of the virus infection level (high vs. low) on the transcriptome of two
mouse strains (B6 vs. SEG).

id strain infection
ml B6 low
m2 B6 low
m3 B6 high
mé B6 high
mbd SEG low
mo SEG low
m’/ SEG high

ma SEG high

1
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Interaction between two factors/variables

Infection
A

Low High

Strain <

\ SEG

Interaction:

e |[s the infection effect different between the two strains?

e Does the difference between the strains change according to the
infection?
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Examples of interactions

Reinforcement of the infection effect

SEG
high
A

0 A

o B6

0 high

c A

.g SEG

§ B6 low

% low @

n L]

| I
B6 SEG

Biological condition

|
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Examples of interactions

Expression gene G
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Decreasing of the infection effect

B6
high
A SEG
SEG high
B6 low A
low ® ,l\
&
T |
B6 SEG

Biological condition
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Examples of interactions

Expression gene G
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Inversion of the infection effect

B6
high
A
SEG
B6 low
low @
@
SEG
high
A
T |
B6 SEG

Biological condition
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Complex design with nested factors

A treatment T is applied to two CF patients and two healthy people. We
study the initial transcriptome and after 4h of treatment.

id state time patient
h1-0 healthy Oh hl

h2-0 healthy Oh h2

hl-4 healthy 4h hl

h2-4 healthy 4h h2
cfl-0 CF Oh cfl
cf2-0 CF Oh cf2
cfl-4 CF 4h cfl
cf2-4 CF 4h cf?

The "patient” effect need to be taken into account, but it is nested into the
"state" effect.
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Confounding effect

Comparison of CF vs healthy patients:

id
hl
h2
h3
cfl
cf?
ct3

state

healthy
healthy
healthy
CF
CF
CF

age
45
52
48
31
25
277
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gender

female
female
female
male
male

male

RNA extraction day
July 9, 2019
July 12%%, 2019
July 15", 2019
Feb 20, 2019

Feb 24, 2019

Feb 29, 2019

experimentalist

Louis
Louis
Louis
Francoils
Francois

Francois
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Confounding effect

A gene is detected as being differentially expressed between healthy and CF

patients. Is it due to:

The disease?
The gender effect? o
The age effect?

The date effect?
The technician effect?

1
31| Pierre Pericard | RNA-Seq biostat | Oct. 2023 ‘) I ‘ I ‘ | G




Biological vs. technical replicates

Technical
replicates

> Biological
replicates
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Biological vs. technical replicates

Technical Biological

1|
33| Pierre Pericard | RNA-Seq biostat | Oct. 2023 ‘) I ‘ I | ‘ G




Biological vs. technical replicates

Technical replicates:

e Several extractions of the same RNA

e Several libraries built from the same RNA extraction

e Alibrary sequenced several times

Allow to get more sequencing depth and a better coverage. Need to sum the
counts associated to each technical replicates.

Biological replicates:

e Correspond to the variability visible in the real life

Comment: what happens when studying fungi/yeast?
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Sequencing design

Goal:

Do not add any confounding technical effect (day, lane, run, etc.) to the
factor of interest.

Bad example X Good example v Good example N

Healthy 1 Healthy 1
Healthy 1 CF 1 Healthy 1 CF 1
Healthy 2 Healthy 2
Healthy 3 Healthy 3
Healthy 2 CF 2 CF 2 Healthy 2
CF 1 CF 1
CF 2 CF 2
Healthy 3 CF3 Healthy 3 CF 3
CF3 CF 3
Lane 1 Lane 2 Lane 1 Lane 2 Lane 1 Lane 2
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Sequencing design

Technical variabilities:

e Lane
e Flowcell
e Run

lane effect < flowcell effect < run effect << biological variability

Use the same multiplexing rate for all the samples!

|
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Remember

The biological question must be well defined in order to build an
experimental design which will be able to address it.

Identify all the sources of variability:

e (Change of biological condition (e.g. KO vs WT)

Within replicates variability (e.g. KO1 vs KO2 vs KO3)
Experimentalist or day effect

RNA: quality and extraction

Library: PCR, concentration, random priming, rRNA removal
Sequencing machine, flowcell and lane

And so on...

1
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Outline

1. Introduction

Designing the experiment
Description/exploration
Normalization

Modeling

® o A W N

SARTools
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Starting point of the differential analysis

genel
gene2
gene3
gene4
gene5
geneo6
gene’
gene8
gene?9
genell
genell
genel2
genel3

geneN

TO-1

151
142
157
275

10

12
269
10065
651
118

18

TO-2

131
134
147
249
5

0

7
16
20
262
9593
566
116

31

TO-3

183
153
166
342
2

1

3
10
24
379
11955
819
150

39

T4-1 T4-2

31 35
650 629
7 10
70 44
0 0

0 1

0 0
28 12
14 84
112 132
4076 3739
101 86
18 24
4 4

T4-3

44
7183
20
91

10
77
138
4137
74
42

T8-1

19
136

715

NS
10
44
2736
977
15

T8-2

31
241
10
64

33
10
33
3311
87

T8-3

18
151

62

23

48
2749
96

Goal: find genes differentially expressed between biological conditions
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Many plots to produce

Description sample by sample:

e Total number of reads

e Percentage of null counts

e Percentage of reads caught by the most expressed gene
e Distribution of the counts

Multivariate description of the data:

e SERE coefficient for each pair of samples [2]
e Principal Component Analysis

e Hierarchical clustering

1
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Distribution of counts data

Library: M
fragments of RNA

Random
sampling

/ Lane: N << M fragments
® m o o

@ > B, 04 =

- RNA fragments from gene G

Q RNA fragments from other genes

‘It is a good approximation to say that there is a linear relationship between
read counts resulting from a sequencing experiment and the abundance of
each sequence in the starting RNA material.” [1]

1
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Distribution of counts data

Library: M
fragments of RNA

Random
sampling

/ Lane: N << M fragments
® m o o

@ > B, 04 =

- RNA fragments from gene G

Q RNA fragments from other genes

Let 1, = proportion of fragments of gene G:
{read R comes from gene G} ~ Bernoulli(1r,,)
Thus:

X = nb. of reads from gene G ~ Binomial(N, 1) = Poisson(NT )

|
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Distribution of counts data

Library: M
fragments of RNA

Random
sampling

/ Lane: N << M fragments
® m o o

@ > B, 04 =

- RNA fragments from gene G

Q RNA fragments from other genes

With a deeper sequencing (i.e. larger N):
e Higher probability to catch lowly expressed genes
e Higher precision when estimating

1
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Distribution of counts data

If X, ~ Poisson(NT,):
mean(X) = variance(X,) = Nt

Due to biological variability, we observe over-dispersion:

One dot = one gene

Variance

Mean

— Need a statistical law with variance # mean.
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Distribution of counts data

Let X; the number of reads that align on gene i for sample j (intersection row j
- columnj of the count matrix).

x; ~ Negative-Binomial(mean = u,, variance = a,.jz)
where

° 0 = H; +<PIJ
° go blo(oglcal dispersion of gene i

Particularity: the xl.j’s are null or positive integers.

|
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Total read count per sample

Total read count per sample (million)

50

40

w
o
1

Total read count (million)
N
o

1

10

T T T T T T T T T
L N C") - N O’) = (\I G’)
O O O <r ﬁ' ﬁ' co CO oo
~ [ — = — — [ [ [

Samples

i1ja
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Percentage of null counts per sample

Percentage of null counts per sample

0w

Percentage of null counts

T T T T T T T T
O o ﬂ' <r <l' [ce] [ee] [c0]
|— [ |— [ = — — [ [

Samples

1
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Percentage of reads from most expressed sequence

Percentage of reads from most expressed sequence

7.5+

o
o
1

Percentage of reads

3778

5369
5369

5369

o
~
~
(5]

2.5

(=]
©
[3ed
el
(=

0.0 - ' : !
o o o <t < <t <o} [ee) [ce]
~ [ ~ — [ — ~ — ~
Samples

1]1i
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Distribution of the counts per sample

Density of counts distribution

0.4 /
/
0.3
>
= TO
C
8 — T4
= T8
0.1
0.0
10° 102 10* 108
Raw counts

illle
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SERE coefficient [2]

Goal: assess the similarity/dissimilarity between samples

r=0ifA=B

SERE(A, B) « = 1 if Aand B are technical replicates

> 1 if Aand B are biological replicates

\~ >> 1 if Aand B come from different bio. conditions

More suited to RNA-Seq data than the Pearson/Spearman
correlation coefficients.

|
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SERE coefficient: details

e 2 samples (A and B) and N genes under study
* y,;= # of reads for gene i (1, ..., N) and sample j (A or B)
° Lj = total # of reads (library size) for sample j
e E£.=y, +y,=number of reads for gene i
e Expected # of reads for gene / and sample j:
f/l.j= E. x Lj/ (L, + L)
o Expected variation for each observation y, : (y, - f/ij)2
e Expected variation under Poisson assumption: f/ij
e Overdispersion for each gene i: s* = (y,, — V., )V, + (Vg — V)V

SERE(A, B) = sqrt((Z 2) | N)

=1..N Si

1
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SERE coefficient: example

T0-1
T0-2
T0-3
T4-1
T4-2
T4-3
T8-1
T8-2
T8-3

T0-1
0
2.97
3.88
73.89
71.83
74.02
74.69
76.90
74.03

T0-2
2.97
0
3.00
72.21
70.03
72.33
72.94
75.15
72.32

T0-3

3.88

3.00

0

76.34
74.28
76.33
77.18
79.38
76.51

T4-1
73.89
72.21
76.34
0
5.83
10.42
17.27
14.93
17.99

T4-2
71.83
70.03
74.28
5.83
0
10.89
17.77
15.07
18.10

T4-3
74.02
72.33
76.33
10.42
10.89
0
19.86
18.25
20.07

T8-1
74.69
72.94
77.18
17.27
17.77
19.86

0

6.72

4.04

Drawback: not very easy to interpret with many samples.
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T8-2
76.90
75.15
79.38
14.93
15.07
18.25

6.72

0

8.22

T8-3
74.03
72.32
76.51
17.99
18.10
20.07

4.04

8.22

0
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Exploratory data analysis (EDA)

Two main tools:
e Principal Component Analysis (PCA)
e (lustering

Pre-requisite:
e Notion of distance between the samples
e Make the data homoscedastic:

variance must be independent of the mean

1
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Variance increases with intensity

Pairwise scatter plot of counts

20000

15000

10000

Counts sample 2

5000 ede e

0 5000 10000
Counts sample 1
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15000

20000

Variance

10'°

108

10°

10*

10°

Variance vs mean

One dot = one gene

10°

Mean

10°

10*

10°
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Log-transformation

Pairwise scatter plot of log-transformed counts Variance vs mean of log-transformed counts

10° 1:2

10*
~ 0.8
Q 3
Q.
= 10 §
& 3
8 ©
= >
Q 2
O 10

0.4
10" iodog
100 + . 0.0
10° 10’ 10 10° 10 10° 0 2 4
Counts sample 1 Mean

1|
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Variance-Stabilizing Transformation [3]

Pairwise scatter plot of VST-counts Variance vs mean of VST-counts

15 e

(o2}

10

VST-counts sample 2
Variance

5 10 15 5 10 15

VST-counts sample 1 Mean

Use these data to perform Exploratory Data Analysis!

1|
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Principal Component Analysis (PCA)

Goal:
Facilitate the vision of a large (high dimensional) data set.

Method:

Project a cloud of P dots (samples) of dimension N (genes) on a subspace
(e.g. a line or a plan) while conserving most of its structure.

1
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Projection: loss of information

THIS IS TRUTH

1|
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Projection: loss of information

Camel vs. dromedary (illustration by J.-P. Fénelon)

|
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PCA on a fish (source: bioinfo-fr.net)

|
60 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 |) I ‘ I | ‘ G



PCA on a fish (source: bioinfo-fr.net)

|
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PCA of a small cloud (2 dimensions)

One dot = one sample

Gene 2

R s Rl

|
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PCA of a small cloud (2 dimensions)

One dot = one sample

\ , PC 1

| 1
PC1 =z, Gene1 +z', Gene2

—_ =2 2
PC2 =z, Gene1 + 27, Gene2

|
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PCA: important scores

Percentage of inertia associated with an axis:
e Proportion of the total information supported by this axis
e Decreases with the axis rank (by construction)

Number of axes to interpret:

e Such as the sum of the percentages of inertia is = x%
e Elbow criterion

e And many other methods

Comment: the data structure is (supposed to be) known in a differential
analysis framework.
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PCA: RNA-Seq example

Principal Component Analysis

20

10

=
g TO
2 0
o ® T4
%LJ T8
-10
O
T4-1
T4-2
o
©
20 T4-3
-50 0 50

PC1 (93.78%)
Pre-requisite: counts must be transformed (made homoscedastic) before
building the PCA.
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PCA: dimensionality reduction

genel
gene2
gene3
gene4
gene5
geneob

gene’

geneN

PC1
PC2

TO-1
.41
.07
.21
.35
.04
.69
.24
.29
.65

w w o o FH J o J o

-60.1
1.3

TO-2
.35
.10
.24
.34
.24
.04
.69
.76
.17

S w O O B oy 1o

-61.0
0.5
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s w O O O 9 o 1o

TO-3
47
.02
.12
.44
.62
.36
.01
.18
.13

From genes/variables to
principal components

-61.5
-0.1

oa b~ O O O o w wu U

T4-1
.36
.21
.71
.51
.16
.12
.76
.74
.96

25.9
-11.9

O W O O O o @ wu U

T4-2
.54
.24
.06
.12
.17
.67
.74
.98
.17

30.4
-14.0

ua W O O O o P 0w 0

T4-3
.38
.05
.32
.44
.50
.80
.79
.47
.65

28.8
-15.0

b O NPy W U

T8-1
.03
.69
.93
71
.02
.02
L2
.31
.09

31.0
15.1

b O B O o b O U

T8-2

.41
.19
.05
.47
.97
.28
.74
.95
.02

33.1
7.9

w P O H = o W I B

T8-3

.96
L7
.91
.50
.26
.32
72
.65
.98

33.3
16.3
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PCA: confounding effect

Transcriptome study of a bacteria at Oh, 2h, 16h and 24h:

label
Oh-1
Oh-2
0Oh-3
2h-1
2h-2
2h-3
16h-1
l16h-2
16h-3
24h-1
24h-2
24h-3
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time
Oh
Oh
Oh
2h
2h
2h
16h
16h
16h
24h
24h
24h

replicate
rl
r2
r3
rl
r2
r3
rl
r2
r3
rl
r2
r3

4h

date

octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8

libraries method libraries exp libraries_ date

robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot
robot

8h

Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob
Bob

16h

novl8
novl8
novl8
novl8
novl8
novl8
novl8
novl8
novl8
novl8
novl8
novl8

24h
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PCA: confounding effect

Transcriptome study of a bacteria at Oh, 2h, 16h and 24h:

Principal Component Analysis

PC2 (3.8%)
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0
PC1 (88.47%)

Oh
2h
16h
24h
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PCA: confounding effect

Add samples 4h and 8h from the same cultures:

Oh

label
Oh-1
Oh-2
0Oh-3
2h-1
2h-2
2h-3
4h-1
4h-2
4h-3
8h-1
8h-2
8h-3
16h-1
16h-2
16h-3
24h-1
24h-2
24h-3

8h

16h
16h
16h
24h
24h
24h

4h

replicate date

rl
r2
r3
rl
r2
r3
rl
r2
r3
rl
r2
r3
rl
r2
r3
rl
r2
r3
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octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8
octl8

libraries method libraries _exp libraries_ date

robot
robot
robot
robot
robot
robot
manual
manual
manual
manual
manual
manual
robot
robot
robot
robot
robot
robot

Bob
Bob
Bob
Bob
Bob
Bob
Donald
Donald
Donald
Donald
Donald
Donald
Bob
Bob
Bob
Bob
Bob
Bob

novl8
novl8
novl8
novl8
novl8
novl8
junl9
junl9
junl?9
junl9
junl9
junl9
novl8
novl8
novl8
novl8
novl8
novl8
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PCA: confounding effect

Global analysis of times Oh, 2h, 4h, 8h, 16h and 24h:

Principal Component Analysis

1%t sequencing batch

0

2/2h-3
/ 2h-1

%-2

PC2 (21.33%)

2" sequencing batch

-10
8h'3/
®
8h-2
®

gh-1°®
10 20
PC1 (64.05%)

-10 0

illle
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PCA: pairing factor

Two treatments applied to human cells coming from 3 donors:

label treatment donor
dl1-IFN IEFN dl
dl-Ctrl Ctrl dl
d2-IFN IFN dz
d2-Ctrl Ctrl dz2
d3-IFN IEFN d3

d3-Ctrl Ctrl d3

1
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PCA: pairing factor

Two treatments applied to human cells coming from 3 donors:

Principal Component Analysis
d3-IFN &

20

10

Ctrl
® IFN

PC2 (17.57%)

d1-IFN
[ J

d2-IFN®

-25 0 25
PC1 (73.02%)

|
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PCA: pairing factor

Two treatments applied to human cells coming from 3 donors:

Principal Component Analysis
d3-IFN &

20

10

PC2 (17.57%)

d1-IFN
[

-25 0
PC1 (73.02%)
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Ctrl
® IFN

d2-IFN®

25

PC3 (8.22%)

10

-10

®d1-IFN

-25

.d3-IFN

0
PC1 (73.02%)

d2-IFN e

Ctrl
® |IFN

25
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PCA: most beautiful RNA-Seq example

Transcriptome study of a cyanobacteria at 8 time points from Oh to 24h:

Principal Component Analysis

.‘IZC
% 12n"®
O
12B
20A 20B
Seo
20C Ok
< ® 3h
> » 6h
~ oo
S oh
~ ® 12h
O 24C
o 16h
° @ 6B 6. ® 20h
24B .24A ® 24h
-20
3B
® O
e 3C
-30 -20 -10 0 10 20 30

PC1 (49.08%)
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Clustering

Goal: build groups of samples such that:
e samples within a group are similar
e samples from distinct groups are different

Method (ascendant clustering):

Calculate the distances between each pair of samples
Gather the two nearest samples into a cluster

Calculate the distance between this cluster and each sample
Gather the two nearest clusters/samples

Go back to step 3 until getting a single cluster

bk~

1
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Hierarchical clustering: example

7¢ regroupement SRR L 0T =5l ... AEGHEEH)
ABC DE
6° regroupement B 4'”(‘)
FGH 4.0 1.81
ABC DE FG 2
DE 4.72
5¢ regroupement FG 4.23 1.81
H 4.07 2.9c®
ABC D E 3
D 4.72 aha i ekt b {ABC},{DEFGH}
4¢ regroupement E 5_5.1_3
. 407 20l 181 e
R R R R e {ABC},{DE},{FGH}
T A {ABC},{DE}, {FG},{H}
ABC D E F G
s e . i s el {ABC}{D},{E},(FG
3¢ regroupement E 5.55 1.00 __»_4__.4:_-;1'_:-""/' ' ] {ABC},{D},{E}{F},{G},{H}
F 4.07 2.01 2.06 ‘
G 4.68 2.06 1.81;‘_’_}/‘ {AC},{B},{D}{E},{F}{G}.{H}
H &:75 316 2:30 L1 = {A},{BL{CLD}, {ELFLIG) (H}

_}_3./ /D E F G B C D E F G
D IR0 4.72 56 1°"regroupement
2¢ regroupement E 5.57 5.55 1.00 .72 4.80
F 4.07 4.23 2.01 2.06 .55 5.57 1.00
G 4.68 4.84 2.06 1.81 0.61 .23 4.07 2.01 2.06
H 4.75 5.02 3.16 2.90 1.28 1.12 .84 4.68 2.06 1.81 0.61
.02 4.75 3.16 2.90 1.28 1.12

Source: MOOC FUN Analyse de données 2015 — Agrocampus Ouest
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Hierarchical clustering: RNA-Seq example

Cluster dendrogram
Euclidean distance, Ward criterion

800

600

Height

400

200

TO-1-—

T

TO-2
TO-3 1—

T4-3

[ ~

T8-1
T8-3

l_
Samples

Pre-requisite: counts must be transformed (made homoscedastic) before
building the PCA.
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Clustering parameters

Distance between two samples: euclidean, correlation, Manhattan...

Aggregation criterion (i.e. distance between two clusters):

e Average linkage: average distance between all the samples

e Single linkage: distance between the two closest samples

e Complete linkage: distance between the two furthest samples

e \Ward: merge the clusters that lead to the cluster with minimum variance

oo ? o® ::
e TRl

|
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Outline

1. Introduction

Designing the experiment
Description/exploration
Normalization

Modeling

L R

SARTools

i
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Goal

|dentify and correct for systematic technical bias and make the counts
comparable between samples.

Total read count per sample (million)

50

R
M
W e
L T T T T T T T T T
= 2y ity = o @ = o e
o o o <t <t < [ce] [so) [ce)
= = = l al al e e e

Samples

40

30

Total read count (million)

10

1
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Framework

Normalization framework:

e RNA-seq data

e Differential expression experiment

e Counts data (positive integer values)

Total number of reads (library size): number of reads sequenced, mapped
and counted for a given sample (sum over the rows for a given column of the
count matrix).

1
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What is a differentially expressed gene? [10]

B Gene 1 - Gene 2 [ Gene 3

®

(b) Proportional shares of mRNA

D
2 - -
<
= |
%
1 2 3 1 2 3
cond. A cond. B cond. A cond. B
(c) Reads aligned to each gene
[—— ——] —
I D .
== l——| e ] | == == ==
1 1 B | Y I = == == B 1§ |
_-_\ ”v"\ *I___ = == === T-l—l ] ]
= = == 4 1 1 | 1 1 B [ : 1 1 |
TTCGATAGTG CAC AA— TTCGATAGTGCAC AATAGGCGA
1 2 3 1 2 3
cond. A cond. B

C. Evans et al. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.
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82 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 |) I ‘ I | ‘ G



What is a differentially expressed gene? [10]

(d)

No normalization Total Count normalization
= =
-} 3
(@] (@)
Q &)
o ©
(9] ©
o o
© (@)
(= ’ c
123 123 1 2 3 123
cond. A cond. B cond. A cond. B
(e)
m
S
<
o 1|-P——-------
=
©
€=
O 0.5}- _————
O
(@)
L

1 2 <) 1 2 3
No normalization  Total Count normalization

C. Evans et al. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.
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norm. read count

Correct normalization

123 123
cond. A cond. B

1l 2 3

Correct normalization
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Global shift in expression [10]

(a) (b) . Gene 1
Same number of molecules sequenced
= Gene 2
@
O
<
=2
™4
E I
c;nd 2A célmd.zB cond. A cond. B
(c) Differences in read count from technical variability
8 8 7 | |
I N N . N N I .
1 8 1 | | 8 1 I |
5 B ] | | s Y o s e e
ACGINIGEARTGEEI CGATGGCTAG  ACGIIIGEAATGEEI CGATGGCTAG
1 2 1 2
cond. A cond. B
(d) (e)
s}
g2 :
N 3 > 1
© S ©
:
S o ke
N e
1 2 1 2 1 2 1 2
cond. A cond. B Observed Truth

C. Evans et al. Selecting between-sample RNA-Seq normalization methods from the perspective of their assumptions. Briefings in Bioinformatics, 2017.
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Goal of the DESeq2/edgeR normalizations

1. Correct for the differences of library sizes:

2. Correct for the differences of library compositions:
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genel
genez
gene3
gene4

Total

genel
gene?Z
gene3
gened

Total

Sample 1
30
50
20
100

200

Sample 1
30
50
20
100

200

Sample 2
60
100
40
200

400

Sample 2
60
100

40

200
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Notations

x.: number of reads for gene /in sample j
; total number of reads in sample j (library size)
n: number of samples studied
S, or . normalization factor for sample j
i )
L length of gene |

1
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DESeq2 normalization [3]

DESeq2 computes a size factor S; per sample:

Xij

s;j = median; :

(I Tk=1 Xix)7

in order to normalize counts:

X,"
Xjj = o
)

/ Y \ Assumptions:

1. The majority of the genes is not differentially expressed
2. As many down- as up-regulated genes

1
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DESeq2 normalization: computation of s,

genel
gene2
gene3
gene4
gene5
geneb6
gene’
gene8
gene9

genell

geneN

TO-1
151
142
157
275

10
12
269

18

TO-5
131
134
147
249

16
20
262

31
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Fictive sample: geometric

mean of each gene

Comparison of sample
j=1 to the fictive sample

3=

T8-3 (HZ:1 Xik)

18 31
151 650
8 7
62 70
3 2

3 1

1 5
23 28
9 74
48 112
2 4

/

Xij

(ITk=1%ik)

3=

4.87 \

0.22
22.43
.93
.00
.00 _

80 > S, = median
.36
.16

N O O O N N W

.40

illle




edgeR normalization [4]

edgeR computes a normalization factor l; per sample and normalizes the
total numbers of reads I\Ij

We can calculate DESeqg2-like size factors S, in order to normalize the
counts:

N’_ Xii
sj =+ J and so x;j=i
72 kN >j

Assumptions: same than DESeqZ2.

1
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Other normalization methods

Total number of reads:
or

Robustness issue if a gene catches a very high number of reads.

RPKM (Reads Per Kilobase per Million mapped reads):

X..
/

[ N] X Li

e Same issue than the total number of reads method
e Introduce other biases [9]
e No need to correct for the gene length since the gene is "fixed"

%« 10% « 103

1
90 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 ‘) I ‘ I ‘ | G




Effect of the normalization (DESeq2 or edgeR)

Raw counts distribution

10°

10*

Raw counts

102

10°-

TO-1

T0-2

TO-3

T4-1

a
<

s
Samples

T4-3
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b
=

o
b
i

T8-3

Normalized counts

10°

10*

10?

10°

Normalized counts distribution

TO-1

T0-2

T0-3

Q
<

[y
Samples

T4-1
T4-3
T8-1
T8-2
T8-3
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Outline

1. Introduction

Designing the experiment
Description/exploration
Normalization

Modeling

o e A W Db

SARTools

i
92 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 ‘) I ‘ I ‘ | G




Classic linear model

Goal:

Explain a dependent variable Y thanks to a set a explicative variables
X=(X,, ..., X )using the model:
Y~XB+¢

Output of the model:
Estimations of ,81, ,Bn: effect of each explicative variable on Y.

1
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Linear model: RNA-Seq example

1200 —
1000 - ® T8-3
& T8-2
®)) & T8-1
o 800
c
=
12 600 - A T4-2
§ A 143
@) 400 A T4-1
200 -
@ T10-3
@ T0-2
0 - @ T0-1
TO T4 T8

Goal: explain counts of gene g thanks to the biological conditions.

|
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Linear model: RNA-Seq example

Goal: explain counts of gene g thanks to the bio. conditions (TO, T4 and T8).

(12 (100 fea)
87 1 00 €2
130 1 00 €43
352 1 10 Bog €g4
log, | 583 1 10 B1g €45
490 1 10 :‘82g €g6
845 1 01 €g7
017 1 01 €28
\1032/ \1 0 1) \ €29/
Here: ,2309 = 5.95, ,?319 =291 and A,Bzg = 3.57

One model per gene — thousands of models!
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Why replicate?

Perfect world:

No biological nor technical variability

¢

Only one sample from each condition to conclude!

Our world:

Each individual has its own behavior

¢

Need biological replicates to estimate within-condition variability

1
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Why replicate?

Gene expression
N
%

Gene expression
N

WT KO WT KO

1|
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Reproducibility of an experiment: 3 KO vs 3 WT

Good reproducibility More or less good reproducibility Bad reproducibility

4

log,(FC) second experiment
o

log,(FC) second experiment
o

log,(FC) second experiment
o

4 0 4 4 0 4 4 0 4
logo(FC) first experiment log,(FC) first experiment logz(FC) first experiment

1]
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Population: set of all mice we could measure
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Sampling 1: selection of 3 mice per condition

|
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Sampling 2: selection of 3 mice per condition

|
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Sampling 3: non representative

|
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Statistical testing

Greenl Green?2 Green3

Gene g 151 131 183
Question:
Is gene g differentially expressed between green and mice?

|
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Type I error rate: a

Framework and goal:
We wish to show that the expression of gene g of mice is different from

the expression of green mice.

Which risk a of being wrong do we allow when saying:

“gene g is differentially expressed?”

The risk a is chosen by the statistician before the analysis.

1
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Type 11 error rate: f

Context:

We assume that gene g is truly differentially expressed between and
green mice.

e Which risk 8 of not discovering gene g do we allow?
e \Which power 1 - 8 do we want?

We can theoretically control the risk 8 according to the risk a and the number
of replicates.

1
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Type I and type II errors

Y =0

NOT PREGNANT

e

PREGNANT

S S
Y =0 Y =1
NEGATIVE POSITIVE

~ . -

r mgsmve | FFM%P?SITIVE
Sy | N

1
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Type I and type II errors

False positive

NOT HOTDOG HOTDOG

d

TYPE | ERROR

TYPE Il ERROR

1
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a, f and number of replicates n

o. threshold chosen Number of replicates n chosen

Power 1-f
Power 1 -

Number of replicates n o threshold

|
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Formalization

Let /. the average expression of gene g for mice and ., the expression
of green mice. We wish to test the hypotheses:

Hy v =, VS. H.: 1 #u,

The risks can be summarized in:

Decision
A
~ ™~
Do not reject H, Reject H,
-
Unknown H, true 1-a a
truth
H, false I 1-8

.

|
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p-value and conclusion of the test

Definition:

p-value = Proba(reject H | H, true)
= Proba(doing a mistake when rejecting H )

= Proba(observed difference is due to hazard)

Conclusion:
if p-value = a then we reject H,

1
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Equal Fold-Changes — different p-values

Reminder: Fold-Change definition:

£C = expression condition “green” _ H,
expression condition
Gene ml m2 m3 FC p-value
genel 5 7 6 3 0.06
geneZ2 800 1000 900 3 0.03
gene3 700 900 1100 3 0.10
gened 900 500 1300 3 0.06

|
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Distribution of raw p-values

Distribution of raw p-values under Hy

200
100
0
0.00 0.25 0.50
P-values
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1.00

400

300

200

100

0.00

0.25

Distribution of raw p-values under H;

0.50
P-values

1.00
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Distribution of raw p-values

Distribution of raw p-values
800

600
400

200

0.00 0.25 0.50 0.75 1.00
P-values

1|
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One key diagnosis: p-values histograms

Examples of expected overall distribution

] 2000 - [ M a8
0 1500~ | s
& oy ; )
g § 1000 | § 400
g g g
'S e | 4
‘|_h_’ N ) |’|1 H_H H-H W'WHH
[T N - |
025 0.50 0.00 025 0 fLF 0.75 1 .;m 0.00 0.25 0.50 0 "’x 1 ;m
p-values p-values p-values

(a) : the most desirable shape

(b) : very low counts genes usually have large p-values

(c) : do not expect positive tests after correction
illle
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One key diagnosis: p-values histograms

Examples of not expected overall distribution

\\\\\\\

800 1500
3000 -
0 -
>
2 ‘ £l 2000 -
g 400 I — i g
g g g
L ' | |
L 500 -
1000 H |7
200 - ’ —
! | | ! ' ' i
0.00 025 0.75 00 0.00 0.50 )75 1.0 ) O 025 ( 0.75

Frequency

025

p-values p-val

(a) : indicates a batch effect (confounding hidden variables)

(b) : the test statistics may be inappropriate (due to strong
correlation structure for instance)

(c) : discrete distribution of p-values : unexpected

|
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Omics data: multiple testing issue

Context:

We perform a large number N of statistical tests for which we reject or not

H,.

Possible conclusions: Decisions
A
~ —~
Non rejects of H, Rejects of H,
Unknown HO true TN FP
truths H, false FN TP

Among all the genes told differentially expressed, the False Discovery Rate
(FDR) is: FpP

FP + TP

|
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Example of the multiple testing issue

We perform N = 10000 statistical tests and we get the following conclusions:

Non rejects of H, Rejects of H, Total
H, true 8550 450 9000
H, false 200 800 1000
Total 8750 1250 10000
FP 450

= 36% of falsely discovered genes!

FP + TP 450 + 800

1
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Control of the FDR

Goal: control the FDR among the list of differentially expressed genes.
(Very strong) assumption: all the N statistical tests are independent.

Procedure: The Benjamini & Hochberg [6] algorithm transforms the N raw
p-values in N adjusted p-values.

Conclusion:
if adjusted p-value < a then we reject H

1
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Importance of the # of biological replicates

RNA-Seq specificity: often 2 or 3 replicates because of the high cost of the
experiment.

With more biological replicates...

e Better estimation of:
o the variability present in the populations studied
o the difference between the biological conditions

e Better control of the FDR: bad control with only 2 replicates [7]
e Higher statistical power: we detect more easily genes which are truly
differentially expressed

1
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DESeq2 [3] and edgeR [4,8]

Three main steps:

1. Normalization

2. Dispersion (i.e. variability) estimation: crucial step
3. Statistical tests and adjustment for multiple testing

Advantages:

e User friendly and very well documented

e (Good performances

e Authors are reactive on web forums and mailing lists

Many other tools exist: NBPSeq, TSPM, baySeq, EBSeq, NOISeq, SAMseq,
ShrinkSeq, voom(+limma)

1
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Similarities and differences

Similarities:
e Negative Binomial distribution
e Generalized Linear Model (GLM)

Differences:

e Dispersion estimation

e \Way of dealing with outlier counts
e |ow counts filtering
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Dispersion estimation ¢.: DESeq2 vs edgeR

Reminder:

Dispersions
102

Y
=
N

Dispersion

5
S
74

10° 10?
Mean of normalized counts
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Dispersion estimation ¢. with DESeq2

Dispersions
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Dispersion estimation ¢. with DESeq2

Dispersions
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Dispersion estimation ¢. with DESeq2

Dispersions
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Statistical theory and parameters tuning

o

x& )
b /M
){}' t‘*'\"’

" THEN A
MIRACLE

OCCURS

\.‘\g

. )
5\ ’

; J?ms e :

"I think you should be more explicit here in step two.”

|
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Statistical testing

For each gene g, DESeq2 and edgeR give:

e an estimation of,B Iogz(FC )

e the precision of thls estlmatlon (standard error)
e so the p-value associated with gene g

The set of the N p-values is adjusted in order to conclude.
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Description of the results: MA-plot

A ARAAA A4  AMA MM AA

log, fold change
o

10° 102 10* 10°
Mean of normalized counts
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Description of the results: volcano-plot
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Description of the results: heatmap

Color Key

I:I Much more complex than it appears:

e Use expression data or log,(FC)?
e Which genes to display?

e EXxpression data transformation:
o Homoscedasticity?
o Row centering and scaling?

e Row/column clustering method?

e Average data by condition?

e Batch/replicate effect removal?

1
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Potential issue: detecting outliers

Total read count per sample (million)

15

N
o

Total read count (million)

(9]

c = B 5
= S S <
Samples
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Potential issue: detecting outliers

Principal Component Analysis
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Potential issue: inversion of samples

Pairwise scatter plot
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Potential issue: inversion of samples

Principal Component Analysis Cluster dendrogram
Euclidean distance, Ward criterion
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Potential issue: inversion of samples

Distribution of raw p-values - KO vs WT
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Potential issue: batch effect

Principal Component Analysis
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Potential issue: batch effect

Distribution of raw p-values - KO vs WT

0.00 0.25 0.50 0.75 1.00
Raw p-value

6

o

A
o

Frequency

2

o

o

1]
137 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 |) I ‘ I | ‘ G




Outline

1. Introduction

Designing the experiment
Description/exploration
Normalization

Modeling

o o &~ b

SARTools

i
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Why SARTools?

SARTools = Statistical Analysis of RNA-Seq Tools [9]

Perform a systematic quality control of the data

Avoid misusing the DESeq2 or edgeR packages

Keep track of all the parameters used: reproducible research
Provide a HTML report containing all the results of the analysis

N~

|
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Input files

Target: tab-delimited text file describing the experimental design:

label
WT1
WT2
KO1
KOZ

Counts: one tab-delimited text file per sample (from HTSeqg-count or

featureCounts):
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files

WT1
WT2
KO1
KOZ2

.counts.
.counts.
.counts.

.counts.

genel
geneZ

gene3

gene4

txt
txt
txt
txt

23
355
0

3643

condition
WT
WT
KO
KO
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Source code available on GitHub

github.com/PF2-pasteur-fr/SARTools/
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GitHub This repository  Search Explore Features Enterprise

Blog

PF2-pasteur-fr / SARTools @ Watch

Statistical Analysis of RNA-Seq Tools

28 2 branche 3 release 1

1

9 branch- master~ = SARTools / +

Merge pull request #5 from PF2-pasteur-fi/development

B nvaretau

R

ignettes eports
E DESCRIPTION Version 1.1.0
B NAMESPACE

B NEWS

E README.md
B template_script DESeq2.r Version 1.1.0

B tem

ate_script_edgeR r

README.md

SARTools

SARTools is a R package dedicated to the differential analysis of RNA-seq data. It provides tools to
generate descriptive and diagnostic graphs, to run the differential analysis with one of the well known
DESeq2 or edgeR packages and to export the results into easily readable tab-delimited files. It also
facilitates the generation of a HTML report which displays all the figures produced, explains the
statistical methods and gives the results of the differential analysis. Note that SARTools does not
intend to replace DESeq2 or edgeR: it simply provides an environment to go with them. For more

details about the methodology behind DESeq2 or edgeR, the user should read their documentations
and papers.

SARTools is distributed with two R script templates ( template_script_DESeq2.r and
template_script_edgeRr.r ) which use functions of the package. For a more fluid analysis and to

avoid possible bugs when creating the final HTML report, the user is encouraged to use them rather
than writing a new script

Sign in

+ Star 0 Y Fork o

<> Code

11 Pull requ

4~ Pulse

sl Graphs

HTTPS

‘ou can clo
Subv

& Clone in Desktop

<> Download ZIP
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Utilization: with

#4844 parameters: to be modified by the user #4#4
B R R R R R R R R R R R R R R R R R R SR R R R SRR AR R RN AR R R R R BRI R R ERS
rm(list=1s()) # remove all the objects from the R session

workDir <- "C:/path/to/your/working/directory/" # working directory for the R session
projectName <- "projectName" # name of the project
author <- "Your name" # author of the statistical analysis/report

targetFile <- "target.txt"

4t

path to the design/target file

rawDir <- "raw" path to the directory containing raw counts files

H#

featuresToRemove <- c("alignment_not_unique", names of the features to be removed

"ambiguous", "no_feature", # (specific HTSeq-count information and rRNA for example)
"not_aligned”, "too_low_aQual")
varInt <- "group" # factor of interes
condRef <- "WT" # reference biological condition
batch <- NULL # blocking factor: NULL (default) or "batch" for example
fitType <- “"parametric" # mean-variance relationship: "parametric" (default) or "local"
cooksCutoff <- TRUE # TRUE/FALSE to perform the outliers detection (default is TRUE)
independentFiltering <- TRUE # TRUE/FALSE to perform independent filtering (default is TRUE)
alpha <- .85 # threshold of statistical significance
pAdjustMethod <- "BH" # p-value adjustment method: "BH" (default) or "BY"
typeTrans <- "VST" # transformation for PCA/clustering: "VST" or "rlog"
locfunc <- "median" # "median" (default) or "shorth" to estimate the size factors

4t

colors <- c("dodgerblue","firebrickl",
"MediumVioletRed", "SpringGreen")

vector of colors of each biological condition on the plots

Q

1]
142 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 |) I ‘ I | ‘ G



Utilization: with Galaxy

——‘ Galaxy / ABIiMS Analyze Data  Workf Sha = ! zat lelp r == Using 141.3 MB
4+ - ~
AR == | | SARTools DESeq2 (version 0.99.2) - Ll <&@
-~
search tools Q) i Name of the project used for the report: (%}
Get Data 2015'T0‘_1'8 DESeq2
(-P, --projectName) 4 shown, 203 deleted, 175 hidden
MICRHODE WORKFLOW
Name of the report author: 73.4 MB e e
MicRhoDE workflow
Fugo Veed 182: t048.zi
; : _| 182:t048.zip
ABIMS WORKFLOWS (-A, --author) | @ & X
Workflow 4 Metabarcoding Design / target file: [3 &1 62: targetT048.txt IOW AR
W4M WORKFLOWS I 02: LHactTOIa. b LI 2: targetAnonymise.txt @ 4 %
Workflow 4 LCMS (-t, --targetFile) See the help section below for details on the required format. {
Workflow 4 L CMS DEV Zip file containing raw counts files: [3 ‘ 1: rawAnnonymises.zib @ ¢4 X
Workflow 4 GCMS | 182: t048.zip _'J |
Workflow 4 NMR | | (-r, --rawDir) See the help section below for details on the required format.
ProbMetob Workflow Names of the features to be removed:
COMMON TOOLS alignment_not_unique,ambiguous,no_feature,not_aligned,too_low_aQual
Send Data (-F, --featuresToRemove) Separate the features with a comma, no space allowed. More than once can be specified. Specific HTSeg-count
Lift-Over information and rRNA for example. Default are 'alignment_not_unique,ambiguous,no_feature,not_aligned,too_low_aQual'.
Text Manipulation Factor of interest:
Filter and Sort time
Join, Subtract and Group (-v, --varInt) Biological condition in the target file. Default is 'group’.
Convert Formats Reference biological condition:
Extract Features T0
Fetch Sequences (-c, --condRef) Reference biological condition used to compute fold-changes, must be one of the levels of 'Factor of interest'.
Eetch Alignments
Eetch Alignments Advanced Parameters:
Get Genomic Scores z
I Hide 'l
Statistics
Graph/Display Data
-
Evolution

1|
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Output: HTML report

2 Description of raw data

3 Variability within the experiment:
data exploration

4 Normalization
5 Differential analysis

6 R session information and
parameters

Bibliography
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Statistical report of project testdeseq2:
pairwise comparison(s) of conditions with
DESeqg2

Hugo Varet
2017-12-11

The SARTools R package which generated this report has been developped at PF2 - Institut Pasteur by M.-A. Dillies and H. Varet
(hugo.varet@pasteur.fr). Thanks to cite H. Varet, L. Brillet-Guéguen, J.-Y. Coppee and M.-A. Dillies, SARTools: A DESeq2- and
EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data, PLoS One, 2016, doi: http://dx.doi.org
/10.1371/journal.pone.0157022 when using this tool for any analysis published.

1 Introduction

The analyses reported in this document are part of the testdeseq2 project. The aim is to find features that are differentially
expressed between TO, T4 and T8. The statistical analysis process includes data normalization, graphical exploration of raw and
normalized data, test for differential expression for each feature between the conditions, raw p-value adjustment and export of
lists of features having a significant differential expression between the conditions.

The analysis is performed using the R software [1], Bioconductor [2] packages including DESeq2 [3,4] and the SARTools package
developed at PF2 - Institut Pasteur. Normalization and differential analysis are carried out according to the DESeq2 model and
package. This report comes with additional tab-delimited text files that contain lists of differentially expressed features.

For more details about the DESeq2 methodology, please refer to its related publications [3,4].

2 Description of raw data

The count data files and associated biological conditions are listed in the following table.

label files groupbatch
TO-1 sampleT0-1-htseq.outTO
TO-5 sampleT0-5-htseq.outTO
TO-6 sampleT0-6-htseq.outTO
T4-1 sampleT4-1-htseq.outT4
T4-2 sampleT4-2-htseq.outT4
T4-3 sampleT4-3-htseq.outT4
T8-1 sampleT8-1-htseq.outT8
T8-2 sampleT8-2-htseq.outT8
T8-3 sampleT8-3-htseq.outT8

WN = WN = WN =

Table 1: Data files and associated
biological conditions.
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Output: HTML report

r—— 6 R session information and parameters

2 Description of raw data The versions of the R software and Bioconductor packages used for this analysis are listed below. It is important to save them if
one wants to re-perform the analysis in the same conditions.

3 Variability within the experiment:
data exploration e

4 Normalization

5 Differential analysis

6 R sesslon information and
parameters

Bibliography

R version 3.4.1 (2017-06-30), x86_64-pc-linux-gnu

Locale: LC_CTYPE=fr_FR.UTF-8, LC_NUMERIC=C, LC_TIME=fr_FR.UTF-8, LC_COLLATE=fr_FR.UTF-8,
LC_MONETARY=fr_FR.UTF-8, LC_MESSAGES=fr_FR.UTF-8, LC_PAPER=fr_FR.UTF-8, LC_NAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_MEASUREMENT=fr_FR.UTF-8, LC_IDENTIFICATION=C

Running under: Ubuntu 16.04.3 LTS

Matrix products: default

BLAS: /usr/lib/libblas/libblas.s0.3.6.0

LAPACK: /usr/lib/lapack/liblapack.s0.3.6.0

Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, stats4, utils

Other packages: Biobase 2.38.0, BiocGenerics 0.24.0, DelayedArray 0.4.1, DESeqg2 1.18.1, edgeR 3.20.1, GenomelnfoDb
1.14.0, GenomicRanges 1.30.0, IRanges 2.12.0, limma 3.34.1, matrixStats 0.52.2, S4Vectors 0.16.0, SARTools 1.5.2,
SummarizedExperiment 1.8.0, xtable 1.8-2

Loaded via a namespace (and not attached): acepack 1.4.1, annotate 1.56.1, AnnotationDbi 1.40.0, backports 1.1.1,
base64enc 0.1-3, BiocParallel 1.12.0, bit 1.1-12, bit64 0.9-7, bitops 1.0-6, blob 1.1.0, checkmate 1.8.5, cluster 2.0.6,
colorspace 1.3-2, compiler 3.4.1, data.table 1.10.4-3, DBI 0.7, digest 0.6.12, evaluate 0.10.1, foreign 0.8-69, Formula
1.2-2, genefilter 1.60.0, geneplotter 1.56.0, GenomelnfoDbData 0.99.1, ggplot2 2.2.1, grid 3.4.1, gridExtra 2.3, gtable
0.2.0, Hmisc 4.0-3, htmIiTable 1.9, htmitools 0.3.6, htmiwidgets 0.9, knitr 1.17, lattice 0.20-35, latticeExtra 0.6-28, lazyeval
0.2.1, locfit 1.5-8.1, magrittr 1.5, Matrix 1.2-10, memoise 1.1.0, munsell 0.4.3, nnet 7.3-12, plyr 1.8.4, RColorBrewer 1.1-2,
Repp 0.12.13, RCurl 1.85-4.8, rlang 0.1.4, rmarkdown 1.8, rpart 4.1-11, rprojroot 1.2, RSQLite 2.0, scales 0.5.0, splines
3.4.1, stringi 1.1.6, stringr 1.2.0, survival 2.41-3, tibble 1.3.4, tools 3.4.1, XML 3.98-1.9, XVector 0.18.0, yam| 2.1.14,
zlibbioc 1.24.0

Parameter values used for this analysis are:
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workDir: .

projectName: testdeseq2

author: Hugo Varet

targetFile: target.txt

rawDir: raw

featuresToRemove: alignment_not_unigue, ambiguous, no_feature, not_aligned, too_low_aQual
varint: group

condRef: TO

batch: NULL

fitType: parametric

cooksCutoff: TRUE

independentFiltering: TRUE

alpha: 0.05

pAdjustMethod: BH

typeTrans: VST

locfunc: median

colors: dodgerblue, firebrick1, MediumVioletRed, SpringGreen
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Output: lists of differentially expressed genes

Three tab-delimited text files per comparison:

e * complete.txt:allthe genes

e *_ up.txt:up-regulated genes ordered by adj. p-value

e *_down.txt:down-regulated genes ordered by ad,. p-value

Columns: gene id, log,(Fold-Change), adjusted p-value, ...
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HTML tutorial

SARTools vignette for the differential analysis of 2
or more conditions with DESeg2 or edgeR

SARTools version: r packageVersion("SARTools")

Authors: M.-A. Dillies and H. Varet (hugo.varet@pasteur.fr) - Transcriptome and Epigenome Platform, Institut Pasteur,
Paris

Website: https:/github.com/PF2-pasteur-f’'SARTools

1 Introduction

This document aims to illustrate the use of the SARTools R package in order to compare two or more biological
conditions in a RNA-Seq framework. SARTools provides tools to generate descriptive and diagnostic graphs, to run the

Installation

Input files

Definition of the parameters

Potential issues: technical problems, inversion of samples, batch effects,
outliers...

|
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DESeq2 and edgeR common parameters

Project and author names

Target and count files paths

Rows of the count files to remove

Factor of interest and the reference biological condition
Adjustment variable (batch effect, pairing) in the target file
Multiple testing adj. method and significance threshold a
Colors for the graphics

1
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DESeq2-specific parameters

o fitType: type of link to model the intensity-dispersion relationship,
parametric (by default) or 1ocal

e cooksCutoff: TRUE (by default) to detect genes having outlier counts

e independentFiltering: TRUE (by default) to filter out lowly expressed
genes and gain power on the others

e typeTrans: VST (by default) or r1o0g to make the data homoscedastic to
perform exploratory data analysis (PCA, clustering, heatmaps)

e locfunc: median (by default) or shorth. shorth allows to improve the
normalization for some cases

1
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edgeR-specific parameters

e cpmCutoff: low counts filtering threshold (in counts per million of reads)

e gene.selection: genes selection method for the MDS-plot (pairwise
by default)

e normalizationMethod: TMM by default, RLE (DESeq2), or
upperquartile

i
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Conclusion on SARTools

SARTools...

e facilitates the utilization of DESeq2 and edgeR

e performs quality control and helps to detect potential problems
e fits the reproducible research criteria

Take time to interpret each figure/table in the HTML report!

1
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Interpreting lists of DE genes: gene-set level analysis

What is a gene-set?
— Any group of genes having a biological meaning

Note: some genes can belong to several sets and others to none

Two main approaches:

e Competitive null hypothesis: genes in the set are “as DE as” genes not
in the set

e Self-contained null hypothesis: genes in the set are not DE

Several methods:

e Over-Representation Analysis (competitive): are genes in the set more
DE than genes not in the set? — Fisher’'s hypergeometric test

e Linear models using limma R package’s functions:
o competitive: camera () and romer ()
o self-contained: roast () and fry ()

1
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Interpreting lists of DE genes: gene-set level analysis

Several issues/options to deal with:

e Make gene IDs compatible with the gene-sets by converting diff. analysis
Ensembl IDs (for instance) into ENTREZ IDs: no perfect matching and
be careful with the annotation version(s) used

e \Which gene-sets to test?
o depends on the biological question
o will impact the p-value adjustment for multiple testing
o restrict the background to genes belonging to at least one set?

e Separate down- and up-regulated genes?

e Import gene-sets into R and make them ready for the analysis: from
MSigDB or R packages... but there may be some differences

1
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General conclusion on DGE

e RNA-Seq project = discussions between biologists, bioinformaticians and
biostatisticians... as soon as the project starts!

e Statistical needs during all the project, not only for the differential
analysis
o Normalization step is critical: the assumptions have to be checked
o No magic recipe: need to choose the statistical model according to
your biological question
o Statistical analysis must not be a black box!

Complex experimental design — difficult interpretation of the results

1
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Time to practice

1
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Gene Sets

A gene set is nothing more than a group of genes belonging to the same ...

FUNCTION LOCALIZATION

proteins expressed in
the same cellular
compartment

REGULATION

targets of the
same regulatory
elements

PHENOTYPE
proteins co-expressed

under certain
conditions

WHATEVER

user defined
relevant
classification

members of same
biochemical
pathway
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Gene annotations Databases

Gene Ontology (GO): http:/geneontology.org/

Controlled vocabulary (fixed terms) for annotating genes

e Molecular Functions: Molecular-level activities performed by gene
products
e Cellular Components: Locations relative to cell compartments and

structures
e Biological Process: Larger processes accomplished by multiple molecular
activities

Kyoto Encyclopedia of Genes and Genomes (KEGG): https://www.genome.jp/

e Pathways: Larger processes accomplished by multiple molecular activities

And many others... (http:/software.broadinstitute.org/gsea/msigdb/index.jsp)
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Enrichment analyses

Over-Representation Analysis (ORA)

e Fisher’s exact tests

e Available through many web-services and many R packages

e Takes as input a list of genes of interest (usually all DE genes) and test if
the list is enriched in specific gene sets (better than by chance)

Gene-Set Enrichement Analysis (GSEA) (Subramanian et al. 2005)

e Ranking tests

e Available as a desktop software, and implemented in multiple R
packages

e Takes as input a ranked list of genes (usually all genes in the study) and
test if specific gene sets are over-represented at the extremes (top or
bottom) of the entire ranked list
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ORA

For a given gene set / annotation (eg. a given GO term)
e GeneRatio: #annotated genes / #considered genes
e BgRatio: #annotated genes in universe / #genes in universe

e RichFactor: #annotated genes / #annotated genes in universe
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ORA

thylakoid - i

chloroplast thylakoid - i
plastid thylakoid O
thylakoid part - ’
p.adjust
thylakoid membrane - .
0.002
photosynthetic membrane - ‘
0.004
plastid thylakoid membrane - . 0.006
chloroplast thylakoid membrane - .
Count
apoplast - ‘
@ o
plant-type cell wall | & @ -
@ o
plastoglobule - & .
80

light-harvesting complex - @
photosystem1 @
photosystem |{ @

NAD(P)H dehydrogenase complex (plastoquinone){ @

0.01 0.02 0.03 0.04 0.05
GeneRatio
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GSEA

Enrichment plot:
GO_FATTY_ACID_BETA_OXIDATION

0.6-
0.5
0.4
iz
0.2

0.1 1

Enrichment score (ES)

0.0 =

TN

Zerp cross at 10957

‘fed' (positively correlated)
i5 Lp vely

1.0
0.5
0.0
-0.5
-1.0
-1.5

'fasted' (negatively correlated)

o 2500 5000 7500 10000 12500 15.000 17.500 20.000 22500
Rank in Ordered Dataset

Ranked list metric (Signal2Noise)

~ Enrichment profile — Hits Ranking metric scores

il
161 | Pierre Pericard | RNA-Seq biostat | Oct. 2023 |) I ‘ I | ‘ G



GSEA

{ !5 GSEA results are highly dependent on the chosen ranking factor

Possible weights / ranking factor

FoldChange
Log2FoldChange
pvalue

padjust

abs(stat)
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The end

Thank you for your attention!
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