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obtained directly from the samples without culturing microbes in
the laboratory

total genomic DNA of a sample
high sequencing depth

amplicon/targeted/16S rRNA



Project MetaHIT (2008-2012)
METAgenomics of the Human Intestinal Tract

• 124 individuals

healthy, overweight and obese
individual human adults, as well as
inflammatory bowel disease (IBD)

• sequencing of stool samples → 540
Gb of DNA

• 3 million different genes

• a person carries, on average,
540000 genes, a value that
corresponds to some 160 species



• type 1 : high levels of Bacteroides

• type 2 : few Bacteroides but Prevotella are common

• type 3 : high levels of Ruminococcus





Historical sample

• Sample : Jean-Paul Marat, blood stain from the newspaper
L’Ami du peuple

• DNA sequencing : HiSeq 4000, paired-end

568,623,176 reads in total

74,244,610 reads mapped to the human reference genome
ancestry analysis

494,378,566 other reads

among them 9,788,947 quality controlled and cleaned reads
metagenomic analysis



Bioinformatics analysis

Alignment of reads against database of bacterial genomes

Marat may have suffered from a primary fungal infection (seborrheic
dermatitis), superinfected with bacterial opportunistic pathogens

Metagenomic analysis of a blood stain from the French revolutionary Jean-Paul Marat (1743-1793)
https://www.biorxiv.org/content/10.1101/825034v1.full

See also (in French) https://www.lemonde.fr/blog/realitesbiomedicales/2019/11/08/
des-biologistes-moleculaires-font-parler-le-sang-du-revolutionnaire-marat

https://www.biorxiv.org/content/10.1101/825034v1.full
https://www.lemonde.fr/blog/realitesbiomedicales/2019/11/08/des-biologistes-moleculaires-font-parler-le-sang-du-revolutionnaire-marat
https://www.lemonde.fr/blog/realitesbiomedicales/2019/11/08/des-biologistes-moleculaires-font-parler-le-sang-du-revolutionnaire-marat




Lokiarchaeota
a novel candidate archaeal phylum

• sample : deep marine sediments near Loki’s castle (Norvege)

• amplicon sequencing (16S) : new archea

• shotgun sequencing : Illumina HiSeq 2500, SRP045692

assembly : 5,381 protein coding genes, 32% new, 26% archea, 29%
bacteria, 3.3% eukaryotes

Complex archaea that bridge the gap between prokaryotes and eukaryotes
Nature volume 521, pages173–179(2015)



Shotgun sequencing for community samples

• Metagenomics

potentially sequences all fragmented DNA in a community

→ includes all microorganisms and viruses

→ gives access to all genes across the entire genomes

• Metatranscriptomics

potentially sequences all fragmented RNA in a community

→ activity of the genes



Amplicon sequencing

fast and cost-effective

captures a large diversity of microorganisms

benefits from well-designed computational tools

requires PCR (primers, amplification)

restrained to taxonomic classification and profiling

low taxonomic resolution



Shotgun sequencing versus amplicon sequencing

who is there ?

more complete taxonomic information
no bias due to PCR amplification
access to the full genomes and genes
captures genomes which lack amplicon targets (viruses, . . . )

what are they doing ?

functional potential of the community
analysis of gene functions, metabolic pathways, etc.

more expensive

new challenges in terms of data processing, storage

and analysis : size of the data, uneven coverage



Content of this lecture

• Taxonomic analysis

Some general ideas, principles and tools

• Functional analysis

Some general ideas, principles and tools

• Not presented today : Richness, comparative analysis



Key concepts

• To select, or not

focusing on some marker genes
one single marker or a combination of markers

• To assemble, or not

reconstructing the original sequences from short reads

• To bin, or not

gathering sequences that are intended to belong to the same
species, or the same strain

Many routes, many strategies, many tools



assembly based

contigs

scaffolds

selection assembly

taxonomic analysis

functional analysis

marker genes

cleaned reads

quality control

reads

binning

read based



Elements of choice

selection all reads assembly
Biological question

presence/absence of known species ? ? ? ? ? ? ?
discovery of novel species ? ? ? ?
functional analysis ? ??

Complexity of the community H/M/L M/L L

Requirements

computational time ++ + +++
sequencing depth + + +++
bioinformatics skills + + +++

H : high, M : medium, L : low
Computational time : from a few minutes to a few days/weeks
Read-based approaches : web servers or pipelines



Taxonomic classification

• input : short reads from a single shotgun metagenomic
sequencing experiment (FASTA or FASTQ files)

• output : list of detected microbes and their abundances



a combination of markers

one single marker, fulll length

all available genes/genomes kraken, kaiju

PhyloSift, Metaphlan2

one single marker
fragment

shotgun sequencing

sequencing
amplicon



which data to use for the marker(s) ?
reference database with a taxonomy

how to compare the reads to the database ?
comparison engine

how to classify a read ?
supervised binning



Approach 1 : One single marker

• choice of the phylogenetic marker

ubiquitous in the environment/showing some differences
between species

16S rRNA (prokaryote), 18S rRNA (eukaryote), ITS (fungi)

• database : Silva, Greengenes, . . .

• comparison to the database

identification of the reads corresponding to the marker

rRNAselector 2011, SortMeRNA 2012

• processing of the extracted reads

direct classification of the raw reads : Qiime2, MAPseq

reconstruction of the full sequence of the marker gene before
classification : Emirge 2011, MATAM 2017



Approach 2 : Multiple markers

• how to choose the markers ?

• selection of a few universal phylogenetics markers

PhyloSift

• selection of clade-specific markers

Metaphlan2



PhyloSift

• 37 families of ”elite” marker genes

congruent phylogenetic histories

represent about 1% of an average bacterial genome

• 16S and 18S ribosomal RNA genes

• mitochondrial gene families

• eukaryote-specific gene families

• viral gene families

Phylosift

• 37 families of ”elite” marker genes

congruent phylogenetic histories

represent about 1% of an average bacterial genome

• 16S and 18S ribosomal RNA genes

• mitochondrial gene families

• eukaryote-specific gene families

• viral gene families



Metaphlan2
Metagenomic Phylogenetic Analysis

• successor of Metaphlan (2012, Human Microbiome Project)

• markers and quasi-markers

coding sequences that unequivocally identify specific microbial
clades at the species level or higher taxonomic levels

markers : specific of the clade

quasi-markers : show a minimal number of sequence hits in
genomes outside the clade



virus : 38,800 markers + 23,000 pseudomarkers from 3500 genomes

short

read

and pseudo markers

pre-computed database of markers

+ clades (LCA in the taxonomy)

bacteria : 770,000 markers + 130,000 pseudomarkers from 13,000 genomes

archaea : 460,000 markers + 4,600 pseudomarkers from 300 genomes

eukaryotes : 22,400 markers + 2,550 pseudomarkes from 110 genomes



Metaphlan2 — pipeline

• mapping of short reads on the marker database (Bowtie2)

• calculation of the relative abundance of each taxonomic unit

priority to (strict) markers

quasi-markers are added only if the number of (strict) markers
is < 200

normalization of the total number of reads in each clade by
the nucleotide length of its markers

• unclassified subclades : reads belonging to clades with no
available sequenced genomes are reported as an unclassified
subclade of the closest ancestor for which there is available
sequence data



SampleID Metaphlan2 Analysis k Bacteria 100.0

k Bacteria|p Acidobacteria 55.60886 k Bacteria|p Verrucomicrobia

36.2624 k Bacteria|p Proteobacteria 7.09312

k Bacteria|p Actinobacteria 1.03562

k Bacteria|p Acidobacteria|c Acidobacteriia 55.60886

k Bacteria|p Verrucomicrobia|c Opitutae 36.2624

k Bacteria|p Proteobacteria|c Gammaproteobacteria 3.60559

k Bacteria|p Proteobacteria|c Alphaproteobacteria 3.48753

k Bacteria|p Actinobacteria|c Actinobacteria 1.03562

k Bacteria|p Acidobacteria|c Acidobacteriia|o Acidobacteriales 55.60886

k Bacteria|p Verrucomicrobia|c Opitutae|o Puniceicoccales 36.2624

k Bacteria|p Proteobacteria|c Gammaproteobacteria|o Pseudomonadales 3.60559

k Bacteria|p Proteobacteria|c Alphaproteobacteria|o Rhodobacterales 3.48753

k Bacteria|p Actinobacteria|c Actinobacteria|o Actinomycetales 1.03562

k Bacteria|p Acidobacteria|c Acidobacteriia|o Acidobacteriales|f Acidobacteriaceae 55.60886

Kingdom|Phylum|Class|Order|Family|Genus|Species|Strain
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Approach 3 : all possible genes/genomes

• database : reference genomes + taxonomy

no strucural annotation, no phylogenetic markers

• comparison against the database : should be very efficient

alignment-free approaches



Kraken

• database : complete bacterial, archaeal, and viral genomes in
RefSeq NCBI

• comparison : k-mer composition approach

• classification : discriminative k-mers

Kraken

• exact k-mer matching

• complete bacterial, archaeal, and viral genomes in RefSeq
NCBI

METHOD Open Access

Kraken: ultrafast metagenomic sequence
classification using exact alignments
Derrick E Wood1,2* and Steven L Salzberg2,3

Abstract

Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences.
Previous programs designed for this task have been relatively slow and computationally expensive, forcing
researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data.
Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program.
In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times
faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at
http://ccb.jhu.edu/software/kraken/.

Keywords: metagenomics, sequence classification, sequence alignment, next-generation sequencing, microbiome

Background
Metagenomics, the study of genomic sequences obtained
directly from an environment, has become an increasingly
popular field of study in the past decade. In projects that
have studied environments as varied as seawater [1], acidic
mine drainage [2] and the human body [3], metagenomics
has allowed researchers to create a picture of an environ-
ment’s microbial life without the need to isolate and cul-
ture individual microbes. Combined with an ability to
sequence DNA quickly, metagenomics projects can gener-
ate a huge amount of sequence data that describes these
previously invisible worlds.
For many metagenomic samples, the species, genera

and even phyla present in the sample are largely un-
known at the time of sequencing, and the goal of se-
quencing is to determine this microbial composition as
precisely as possible. Of course, if an organism is com-
pletely unlike anything previously seen, then its DNA se-
quence cannot be characterized other than to label it as
novel. Many species, though, have some detectable simi-
larity to a known species, and this similarity can be de-
tected by a sensitive alignment algorithm. The most
well-known such algorithm, and one of the best methods

for assigning a taxonomic label to an unknown se-
quence, is the BLAST program [4], which can classify a
sequence by finding the best alignment to a large data-
base of genomic sequences. Although BLAST was not
designed for metagenomic sequences, it is easily adapted
to this problem and it remains one of the best methods
available [5].
Other methods of sequence classification have been

proposed, utilizing sequence alignment and machine
learning techniques in an attempt to improve upon
BLAST’s accuracy. In the MEGAN [6] program, a se-
quence is searched (using BLAST) against multiple data-
bases, and the lowest common ancestor (LCA) of the
best matches against each database is assigned to the se-
quence. PhymmBL [5,7] combines the results of BLAST
with scores produced from interpolated Markov models
to a achieve higher accuracy than BLAST alone. The
Naïve Bayes Classifier (NBC) [8] applies a Bayesian rule
to distributions of k-mers within a genome. However, all
these programs perform at speeds slower than BLAST,
which itself takes very substantial CPU time to align the
millions of sequences generated by a typical Illumina se-
quencing run. This processing burden is so demanding
that it suggested another, faster approach to metage-
nomic sequence analysis: abundance estimation.
Abundance estimation programs work by creating a

database that is much smaller than the collection of all
genomes, which allows them to perform classification

* Correspondence: dwood@cs.umd.edu
1Department of Computer Science and Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD, USA
2Center for Computational Biology, McKusick-Nathans Institute of Genetic
Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Full list of author information is available at the end of the article

© 2014 Wood and Salzberg; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Wood and Salzberg Genome Biology 2014, 15:R46
http://genomebiology.com/2014/15/3/R46
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<< 431 = 4.6e18

all completed microbial genomes of the RefSeq database

+ LCA (lowest common ancestor)

1.4e9 disctinct k-mers (oct 2017)

47,768 bacteria + 1,034 archaea + 7,530 viruses

all 31-mers present in the database

Precomputed database



the taxonomy for each k-mer

1

1. short read ! overlapping k-mers

2. identification of the LCA in

3. assignation of the
read

4

10

1

Read assignation



Performances of Kraken

• very fast

• excellent results with known/poor results with unknow species

• high memory demanding

500 GB of disk space to build the database 200 GB to store it

• Minikraken : reduced databases

DB 4GB : 2.7% of k-mers from the original database DB
8GB : 5% of k-mers from the original database

• Centrifuge : space-efficient evolution of Kraken

Burrows-Wheeler Transform



Similar tools following the same paradigm

• LMAT, 2013
Scalable metagenomic taxonomy classification using a reference genome

database. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB,

Allen JE. Bioinformatics

• Clark, 2015
CLARK : fast and accurate classification of metagenomic and genomic

sequences using discriminative k-mers R. Ounit, S. Wanamaker, T.J.

Close, S. Lonardi BMC Genomics. 2015 ; 16(1) : 236

• One codex (commercial, free demo version)
web server based on kraken algorithm, registration required



Kaiju

Menzel, P. et al. (2016) Fast and sensitive taxonomic classification for

metagenomics with Kaiju. Nat. Commun. 7 :11257



• protein-level classification : reads are translated into amino
acid sequences

• database

NCBI RefSeq, proGenomes, non-redundant BLAST protein
database (optionally also including fungi and microbial
eukaryotes)

• comparison between the reads and the database

maximum exact matches (MEMs), optionally allowing
mismatches
Burrows-Wheeler Transform

• classification



Visualisation – krona chart

Ondov BD, Bergman NH, and Phillippy AM. Interactive metagenomic
visualization in a Web browser. BMC Bioinformatics 12(1) :385, 2011



Vizualisation – bubble plot







Assembly



 

Metagenomic assembly is impossible

• Two competing goals:

– assemble similar sequences from related genomes together

– do not assemble similar sequences from unrelated genomes

CATGCTGCCTCCCGTAGGAGTTTGGACCGTGTCTCAGTTCCAATGTG

TCCCGTAGGAGTCTGGTCCGTGTCTCAGTACCAGTGTGGGGGACCTTCCTC

GCCTCCCGTAGGAGTTTGGACCGTGTCTCAGTTCCAATGTGGGGGACCTT

Mihai Pop, Sergey Koren, Dan Sommer



Why it is so difficult

• presence of multiple closely related strains or species : hard to
distinguish sequencing errors and poymorphisms

• uneven abundance of organisms present in the sample : this
causes uneven sequencing depth of organisms present in the
sample

• presence of intragenomic repeats + intergenomics repeats
(horizontal transfer) : risk of chimera creation

• size of the data : Gb → Tb



De Bruijn Graph (reminder)

• rationale

• the genome can be reconstructed from the k-mers it contains
• reads are decomposed into k-mers

• graph

• nodes : k-mers present in the reads
• arcs : overlaps of length k − 1 between k-mers

• contig : simple path in the graph
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Application to community samples

• de Bruijn graph + multi-k principle
k = 21→ k = 55→ k = 77

• efficient construction and storage of the De Bruijn Graphs

• careful handling of mismatches

• careful extension of paths in the De Bruiijn Graphs

• intergenomic repeats solving with abundance

• metagenomics : MEGAHIT (2015), MetaSPAdes (2016)

• metatranscriptomics : MEGAHIT (2015)



What to do with contigs

• taxonomy classification
analogous to read-based approaches

• functional annotation
this afternoon

• binning



Binning

• gathering sequences that are intended to belong to the same
species, or the same strain

• taxonomy dependent (supervised binning, taxonomic binning)

• database search, sequence comparison
• known species
• Phylosift, Metaphlan2, MG-Rast, MEGAN, MGnify. . .

• taxonomy independent (inherent statistics)

• sequence composition : nucleotide composition, codon usage
• contig coverage
• hybrid : machine learning



Nucleotide composition
Tetranucleotide usage patterns
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superior regarding the number of genome pairings with a
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score correlations were used (Fig. 3, dotted lines). Dis-
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genome pairings when 

 

D

 

(G 

 

+ 

 

C) was used, but only for 96

(1.4%) genome pairings when tetranucleotide-derived z-
score correlations were applied.
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metagenome libraries. Thus, in the absence of marker
genes, there is at first no chance to assess whether a
given 

 

D

 

(G 

 

+

 

 C) or tetranucleotide-derived z-score correla-
tion between two fragments supports or contradicts the
assumption that they originate from the same group or
species. In order to provide the background for a decision
guideline, we investigated how well a given 

 

D

 

(G 

 

+

 

 C) or
tetranucleotide-derived z-score correlation discriminates
on the phylogenetic levels of species, orders, classes,
phyla and domains. The results are summarized in
Tables 1 and 2. For instance, when two fragments are
randomly chosen from the same species, the average
probability of obtaining a 

 

D

 

(G 

 

+

 

 C) of six per cent or less
is 98.0% (Table 1). When two fragments are randomly
chosen  from  different  species,  the  average  probabi-
lity  for a 

 

D

 

(G 

 

+

 

 C) of six per cent or less is 25.4%. A
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 C)-content of all 40 kb fragments from both genomes are 
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 C)-
content is impossible in most cases, because both histograms largely 
overlap. In the lower part (B), histograms of Pearson’s correlation 
coefficients are shown for all possible pairwise comparisons of the 
fragment’s tetranucleotide-derived z-scores. Correlation within both 
genomes is high (0.69–0.96) while being low between them (0.06–
0.49). Discrimination of both genomes on the basis of tetranucleotide 
usage patterns is possible in all cases.

 

Fig. 2.

 

For all 6903 pairwise comparisons of the 118 bacterial 
genomes investigated, the percentage of non-assignable fragment 
pairs was calculated for the 
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z-score correlations (abscissa). Both, inter- and intragenome frag-
ment pairs were considered. The number of genome pairs having the 
indicated or a better (i.e. smaller) percentage of nonassignable frag-
ment pairs was plotted on the ordinate (cumulative plot). The hatched 
area indicates the region, where tetranucleotide-derived z-score cor-
relations provide a better resolution than the 
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C) and the dotted 
lines refer to the maximum difference between both methods.

• Escherichia coli and Neisseria meningitidis

• overlapping fragments of 40kb

• for each fragment, for each tetranucleotide : Z-score observed
frequency/theoretical frequency

• histograms of Pearson’s correlation coefficients : pairwise
comparisons of the fragment’s tetranucleotide-derived z-scores

Application of tetranucleotide frequencies for the assignment of genomic
fragments. Environmental Microbiology (2004) 6(9), 938–947



Codon usage

• the genetic code is redundant : several codons can code for
the same amino acid

• each species tends to show a preference for particular
synonymous codons

• clustering of sequences according to their codon bias



Contig coverage

• reads are mapped on the contigs

• similar coverage = similar abundance

• two contigs with similar coverage potentially come from same
underlying source population in the community



Hybrid approaches

• cocacola (2017)
COCACOLA : binning metagenomic contigs using sequence COmposition,
read CoverAge, CO-alignment and paired-end read LinkAge
Bioinformatics, Volume 33, Issue 6, 15, pages 791–798

• concoct (2014)
Binning metagenomic contigs by coverage and composition Nature
Methods volume 11, pages 1144–1146

• MyCC (2016)
Accurate binning of metagenomic contigs via automated clustering
sequences using information of genomic signatures and marker genes. Sci
Rep. 2016 ; 6 : 24175.

• MetaBat (2015)
MetaBAT, an efficient tool for accurately reconstructing single genomes
from complex microbial communities. PeerJ 2015 ; 3 : e1165.







Functional analysis



Functional analysis

• how to annotate genes in genomes ?

• how to adapt these approaches to
metagenomic/metranscriptomic reads/contigs ?



Functional analysis

• how to annotate genes in genomes ?

• how to adapt these approaches to
metagenomic/metranscriptomic reads/contigs ?



Functional analysis
Three main approaches

• de novo prediction of coding regions

• homology based annotation

• motif based annotation



Prediction of coding regions

how can we find genes in prokariotic genomes ?

Prokaryotic Gene Structure

● Prokaryotic genes are intronless, organised in operon that encode for polycistronic 
RNAs encoding multiple proteins

● Regulated by DNA elements located relatively close to genes or operons.

By http://iweb.langara.bc.ca

• identification of ORFs (start + stop codon)

• codon usage bias
differences in the frequency of occurrence of synonymous
codons in coding DNA compared to non-coding DNA



Prediction of coding regions

how can we find genes in prokariotic genomes ?

Prokaryotic Gene Structure

● Prokaryotic genes are intronless, organised in operon that encode for polycistronic 
RNAs encoding multiple proteins

● Regulated by DNA elements located relatively close to genes or operons.

By http://iweb.langara.bc.ca

• identification of ORFs (start + stop codon)

• codon usage bias
differences in the frequency of occurrence of synonymous
codons in coding DNA compared to non-coding DNA



AAA 3.5 1.3
AAG 1.1 1.6
AAC 2.4 1.4
AAT 1.4 1.3
AGA 0.1 1.6
AGG 0.1 1.8
AGC 1.6 1.7
AGT 0.7 1.5
ACA 0.5 1.4
ACG 1.4 1.7
ACC 2.5 1.5
ACT 0.9 1.4
ATA 0.3 1.3
ATG 2.5 1.5
ATC 2.7 1.4
ATT 2.8 1.3

CAA 1.3 1.4
CAG 3.0 1.7
CAC 1.1 1.5
CAT 1.2 1.4
CGA 0.3 1.7
CGG 0.4 2.0
CGC 2.4 1.8
CGT 2.5 1.6
CCA 0.8 1.5
CCG 2.6 1.8
CCC 0.4 1.6
CCT 0.6 1.5
CTA 0.3 1.4
CTG 5.7 1.6
CTC 1.0 1.5
CTT 0.9 1.4

GAA 4.3 1.6
GAG 1.8 1.8
GAC 2.2 1.7
GAT 3.2 1.5
GGA 0.6 1.8
GGG 1.0 2.2
GGC 3.2 2.0
GGT 2.8 1.8
GCA 2.0 1.7
GCG 3.6 2.0
GCC 2.5 1.8
GCT 1.6 1.6
GTA 1.1 1.5
GTG 2.7 1.8
GTC 1.5 1.6
GTT 1.9 1.5

TAA * *
TAG * *
TAC 1.4 1.4
TAT 1.5 1.3
TGA * *
TGG 1.4 1.8
TGC 0.7 1.6
TGT 0.5 1.5
TCA 0.6 1.4
TCG 0.8 1.6
TCC 0.9 1.5
TCT 0.9 1.4
TTA 1.1 1.3
TTG 1.2 1.5
TTC 1.8 1.4
TTT 1.9 1.2

Codon Usage Frequence Table – E. coli

1st column : observed frequency
2nd column : theoretical frequency



• short reads : codon usage bias

• contigs : ORF + codon usage bias

• Hidden Markov Models + incomplete ORFs +resistant to
sequencing errors

FragGeneScan

FragGeneScan

• predict protein-coding regions from environmental sequences

• HMM combining

codon usage bias + start/stop codon models (like Glimmer or
Genemark)

sequencing error models

• included in the MG-Rast and EBI pipelines

MetaGeneMark

http://exon.gatech.edu/meta_gmhmmp.cgi

http://exon.gatech.edu/meta_gmhmmp.cgi


Homology based annotation

• alignment of short reads/contigs to a large database of
annotated protein sequences

• databases : Eggnog, SEEDS, KEGG, Interpro, swissprot, . . .

• choice of the alignment tool, DNA/protein

pre-NGS tools : BlastX, BLAT especially designed for gene or
genome comparison

Diamond : optimized to deal with short reads
order of magnitude faster than BlastX for this kind of data (x
1000)

Alignment tools

Query : large set of short DNA reads
Reference : large protein database

• Pre-NGS tools : BlastX, BLAT

• Diamond

� optimized to deal with sort reads
� order of magnitude faster than BlastX for this kind of data

(⇥ 1000)



Motif based annotation

• motif : signature for a known protein family

• models : prosite expression, matrix, profile Hidden Markov
Model



Interpro
Protein sequence analysis & classification

• http:// www.ebi.ac.uk/interpro

• developed at EBI since 1999 (version 70)

• signatures for protein families, domains and functional sites
collected from 14 databases

35 020 entries based on 48 938 signatures

• mappings of InterPro entries to Gene Ontology (GO) terms
(InterPro2GO)



Pipelines for read-based strategies

Taxonomic+functional analyses



MG-RAST
Metagenomics Rapid Annotation using Subsystem Technology

MG-RAST
Metagenomics Rapid Annotation using Subsystem Technology



MG-RAST

• developed since 2007 (University of Chicago)

• supports amplicons (16S, 18S, and ITS), metagenomics and
metatranscriptomics

MG-RAST

• developed since 2007 (University of Chicago)

• extension of RAST ( The Project to Annotate 1000 Genomes)
Rapid Annotation using Subsystems Technology

• subsystems : SEED framework

• also supports amplicons (16S, 18S, and ITS) and
metatranscriptomics
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Abstract
Background: Random community genomes (metagenomes) are now commonly used to study
microbes in different environments. Over the past few years, the major challenge associated with
metagenomics shifted from generating to analyzing sequences. High-throughput, low-cost next-
generation sequencing has provided access to metagenomics to a wide range of researchers.

Results: A high-throughput pipeline has been constructed to provide high-performance computing
to all researchers interested in using metagenomics. The pipeline produces automated functional
assignments of sequences in the metagenome by comparing both protein and nucleotide databases.
Phylogenetic and functional summaries of the metagenomes are generated, and tools for
comparative metagenomics are incorporated into the standard views. User access is controlled to
ensure data privacy, but the collaborative environment underpinning the service provides a
framework for sharing datasets between multiple users. In the metagenomics RAST, all users retain
full control of their data, and everything is available for download in a variety of formats.

Conclusion: The open-source metagenomics RAST service provides a new paradigm for the
annotation and analysis of metagenomes. With built-in support for multiple data sources and a back
end that houses abstract data types, the metagenomics RAST is stable, extensible, and freely
available to all researchers. This service has removed one of the primary bottlenecks in
metagenome sequence analysis – the availability of high-performance computing for annotating the
data.
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• Cleaning of the sequencing reads

• Taxonomic classification

• rRNA selection SortmeRNA/Silva
• RDP classifier

• Functional annotation

• protein coding gene calling : FragGeneScan (prokaryotes)
• comparison to GenBank, SEED, Uniprot, KEGG, IMG and
eggNOGs with BLAT

• Usage : web interface http://metagenomics.anl.gov

• 315,470 metagenomes containing 1,147 billion sequences and
153.91 Tbp processed for 24,415 registered users.



MEGAN
MEtaGenome ANalyzer



MEGAN

• developed since 2007 (U. Tübingen)

• last release : MEGAN CE, 2017

• Databases : NCBI nr + NCBI taxonomy

• Alignment of the reads on the database : Diamond

• Taxonomic classification : LCA, lowest common ancestor
against NCBI nr

• Functional analysis : mapping to KEGG, SEED, EggNOG and
InterPro2GO

• local installation



MGnify
EBI metagenomics

Submit, analyse, discover and compare microbiome data



• first public release in 2013

• close integration with the ENA (European Nucleotide Archive)

EBI Metagenomics

• first public release in 2013

• close integration with the ENA (European Nucleotide Archive)



Version 4.1 (jan 2018)

• cleaning and trimming of the short reads : Trimmomatic

• identification of ncRNAs : infernal

• taxonomic analysis
Mapseq on 16S and 18S rRNA reads (SILVA database)

• functional analysis
gene finding : FragGeneScan + Prodigal

annotation : InterPro + InterProScan + InterPro2GO



Data submission : ENA Webin

• data is stably archived

• accession numbers (prerequisite for many publications)

• active submission helpdesk

• training materials

”A major aim in the development of this resource has been to
encourage metagenomics researchers to openly share their data as
widely as possible, and to also describe their data in sufficient
detail such that other scientists are able to extract maximum value
from it.”



Usage

• webserver : https://www.ebi.ac.uk/metagenomics

upload of the data, analyses on the cloud

• programmatic access : REST API

• krona visualisation

• maybe very slow (several days)



Conclusion

MetaGeneMark

MetaSPades

(one codex)

Kraken

MetaPhlan2

PhyloSift

Kaiju

Interpro (EBI) FragGeneScan (EBI)

contigs

scaffolds

selection assembly

taxonomic analysis

marker genes

cleaned reads

binning

read based assembly based

functional analysis



• fast evolving field

• influence of the nature of the data

• sequencing technology and quality of the data
• complexity of the community
• coverage

• balance between performances and usability



Taxonomic classification
which tool is the best ? with which parameters ?

Which tool is the best ? With which parameters ?

2016, MEGAN (older version), MG-RAST, One Codex

2017, 11 tools (including CLARK, Kraken, LMAT, Metaphlan2,
PhyloSift, MGAN+Diamond)

2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)

2016, MEGAN (older version), MG-RAST, One Codex

Which tool is the best ? With which parameters ?

2016, MEGAN (older version), MG-RAST, One Codex

2017, 11 tools (including CLARK, Kraken, LMAT, Metaphlan2,
PhyloSift, MGAN+Diamond)

2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)

2017, 11 tools (including CLARK, Kraken, LMAT, Metaphlan2,
PhyloSift, MGAN+Diamond)

Which tool is the best ? With which parameters ?

2016, MEGAN (older version), MG-RAST, One Codex

2017, 11 tools (including CLARK, Kraken, LMAT, Metaphlan2,
PhyloSift, MGAN+Diamond)

2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)

2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)



Shotgun sequencing versus amplicon sequencing

Comparing 16S rRNA Marker Gene and Shotgun Metagenomics
Datasets in the American Gut Project Using State of the Art
Tools, E.R. Hyde, J. Sanders, A. Tripathi, Q. Zhu, R. Knight, 2017

”There is some consistency between the 16S and shotgun
metagenomics approaches although some obvious differences are
noted.”

Large-scale differences in microbial biodiversity discovery between
16S amplicon and shotgun sequencing, Michael Tessler et al.,
Scientific Reports 2017

”Overall the amplicon data were more robust across both
biodiversity and community ecology analyses at different
taxonomic scales.”



Assembly and binning
CAMI Challenge

• community-driven initiative

• 700 newly sequenced microorganisms and 600 novel viruses
and plasmids

• 3 artificial communities
low, medium, high complexity
presence of multiple, closely related strains, plasmid and viral
sequences and realistic abundance profiles

• assemblers : MEGAHIT, Minia, Meraga, A*, Ray Meta, Velour

• binners : MyCC, MaxBin 2.0, MetaBAT, MetaWatt,
CONCOCT2

• https://data.cami-challenge.org,
https://data.cami-challenge.org/cami2

Critical Assessment of Metagenome Interpretation—a benchmark of
metagenomics software Nature Methods volume 14, pages 1063–1071(2017)

https://data.cami-challenge.org
https://data.cami-challenge.org/cami2

