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obtained directly from the samples without culturing microbes in
the laboratory

total genomic DNA of a sample
high sequencing depth

amplicon/targeted/16S rRNA



Project MetaHIT (2008-2012)
METAgenomics of the Human Intestinal Tract

• 124 individuals

healthy, overweight and obese
individual human adults, as well as
inflammatory bowel disease (IBD)

• sequencing of stool samples → 540
Gb of DNA

• 3 million different genes

• a person carries, on average,
540000 genes, a value that
corresponds to some 160 species



• type 1 : high levels of Bacteroides

• type 2 : few Bacteroides but Prevotella are common

• type 3 : high levels of Ruminococcus







Historical sample

• Sample : Jean-Paul Marat, blood stain from the newspaper
L’Ami du peuple

• DNA sequencing : HiSeq 4000, paired-end

568,623,176 reads in total

74,244,610 reads mapped to the human reference genome
ancestry analysis

494,378,566 other reads

among them 9,788,947 quality controlled and cleaned reads
metagenomic analysis



Bioinformatics analysis

Alignment of reads against database of bacterial genomes

Marat may have suffered from a primary fungal infection (seborrheic
dermatitis), superinfected with bacterial opportunistic pathogens

Metagenomic analysis of a blood stain from the French revolutionary Jean-Paul Marat (1743-1793)
https://www.biorxiv.org/content/10.1101/825034v1.full

See also (in French) https://www.lemonde.fr/blog/realitesbiomedicales/2019/11/08/
des-biologistes-moleculaires-font-parler-le-sang-du-revolutionnaire-marat

https://www.biorxiv.org/content/10.1101/825034v1.full
https://www.lemonde.fr/blog/realitesbiomedicales/2019/11/08/des-biologistes-moleculaires-font-parler-le-sang-du-revolutionnaire-marat
https://www.lemonde.fr/blog/realitesbiomedicales/2019/11/08/des-biologistes-moleculaires-font-parler-le-sang-du-revolutionnaire-marat




Lokiarchaeota
a novel candidate archaeal phylum

• sample : deep marine sediments near Loki’s castle (Norvege)

• amplicon sequencing (16S) : new archea

• shotgun sequencing : Illumina HiSeq 2500, SRP045692

assembly : 5,381 protein coding genes, 32% new, 26% archea, 29%
bacteria, 3.3% eukaryotes

Complex archaea that bridge the gap between prokaryotes and eukaryotes
Nature volume 521, pages173–179(2015)





How was obtained the first SARS-CoV-2 genome ?

nasal sample sequencing

sequencing reads
(paired-end
Illumina)

↓
filtering
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BOX 1: Alignment of biological sequences

Sequence alignment serves multiple purposes: filtering out the sequencing data, finding genes on the
genome, identifying variants between strains, building multiple sequence alignments for example.

Alignment is the algorithmic process of comparing sequences to detect similarities and di↵erences
between them [1]. Di↵erences correspond to mutations or sequencing errors: replacement of a nu-
cleotide by another one, insertion of an extra nucleotide, or deletion of a nucleotide. When comparing
two sequences, the number of all possible alignments is exponential, because of the combinatorics of
insertions and deletions. Therefore, the naive approach of computing all possible alignments is infea-
sible in practice. This problem can be solved in an exact manner as an optimization problem using
dynamic programming, which is a usual algorithmic paradigm. It works by dividing the problem into
smaller subproblems.

Pairwise alignments can also be computed between a single sequence and a database containing
millions of genomes. This is what is done to remove reads coming from the human genome (3 billions
nucleotides) and other known respiratory parasites when sequencing pulmonary samples. For such
large-scale comparisons, computing exact dynamic programming alignments between the query se-
quence and each of the sequences of the database would require months of calculations. To overcome
this di�culty, bioinformatics researchers have proposed e�cient heuristics able to process gigabytes of
DNA data with a desktop computer. The search is performed by organizing the database into an index
structure that lists all words of a given length, called k-mers, and allows direct access to those words
in the genomes. Examples of such indexes are hashtables, or compressed tree-like data structures
such as su�x arrays and FM-index. After having rapidly identified the few sequences that share such
small similarities with the query sequence, more precise and longer alignments can be performed with
the classical dynamic programming paradigm. This kind of approach makes it possible to identify a
needle in a haystack: similarities as short as 10 nucleotides between the sequence of interest and the
database. With such big data, short matches can occur by chance with no biological meaning. So it
is crucial to evaluate the statistical significance of the alignments found, which is done with E-value
calculations that give a measure of the expected number of alignments due by chance. For example,
it is possible to find local similarities between the gene of the Spike protein and many organisms in
the tree of life as diverse as the two model bacteria Escherichia coli and Bacillus subtilis, the maize or
the zebrafish, and even of some unrelated virus, such as HIV. Those matches all have E-values greater
than 0.01, which is not significant while alignment between the same gene and other coronavirus Spike
genes reaches an E-value as low as 0.

↓
genome, 30.000 nt (january 2020) ← assembly



Shotgun sequencing for community samples

• Metagenomics

potentially sequences all fragmented DNA in a community

→ includes all microorganisms and viruses

→ gives access to all genes across the entire genomes

• Metatranscriptomics

potentially sequences all fragmented RNA in a community

→ activity of the genes



Amplicon sequencing

fast and cost-effective

captures a large diversity of microorganisms

benefits from well-designed computational tools

requires PCR (primers, amplification)

restrained to taxonomic classification and profiling

low taxonomic resolution



Shotgun sequencing versus amplicon sequencing

who is there ?

more complete taxonomic information
no bias due to PCR amplification
access to the full genomes and genes
captures genomes which lack amplicon targets (viruses, . . . )

what are they doing ?

functional potential of the community
analysis of gene functions, metabolic pathways, etc.

more expensive

new challenges in terms of data processing, storage

and analysis : size of the data, uneven coverage



Content of this lecture

• Taxonomic analysis

Some general ideas, principles and tools

• Functional analysis

Some general ideas, principles and tools

• Not presented today : Richness, comparative analysis



Key concepts

• To select, or not

focusing on some marker genes
one single marker or a combination of markers

• To assemble, or not

reconstructing the original sequences from short reads

• To bin, or not

gathering sequences that are intended to belong to the same
species, or the same strain

Many routes, many strategies, many tools



assembly based

contigs

scaffolds

selection assembly

taxonomic analysis

functional analysis

marker genes

cleaned reads

quality control

reads

binning

read based



Elements of choice

selection all reads assembly
Biological question

presence/absence of known species ? ? ? ? ? ? ?
discovery of novel species ? ? ? ?
functional analysis ? ??

Complexity of the community H/M/L M/L L

Requirements

computational time ++ + +++
sequencing depth + + +++
bioinformatics skills + + +++

H : high, M : medium, L : low
Computational time : from a few minutes to a few days/weeks
Read-based approaches : web servers or pipelines



Taxonomic classification

• input : short reads from a single shotgun metagenomic
sequencing experiment (FASTA or FASTQ files)

• output : list of detected microbes and their abundances



a combination of markers

one single marker, fulll length

all available genes/genomes kraken, kaiju

PhyloSift, Metaphlan2

one single marker
fragment

shotgun sequencing

sequencing
amplicon



which data to use for the marker(s) ?
reference database with a taxonomy

how to compare the reads to the database ?
comparison engine

how to classify a read ?
supervised binning



Approach 1 : One single marker

• choice of the phylogenetic marker

ubiquitous in the environment/showing some differences
between species

16S rRNA (prokaryote), 18S rRNA (eukaryote), ITS (fungi)

• database : Silva, Greengenes, . . .

• comparison to the database

identification of the reads corresponding to the marker

• processing of the extracted reads

direct classification of the raw reads : Qiime2, MAPseq



Approach 2 : Multiple markers

• how to choose the markers ?

• selection of a few universal phylogenetics markers

PhyloSift

• selection of clade-specific markers

Metaphlan2



PhyloSift

• 37 families of ”elite” marker genes

congruent phylogenetic histories

represent about 1% of an average bacterial genome

• 16S and 18S ribosomal RNA genes

• mitochondrial gene families

• eukaryote-specific gene families

• viral gene families

Phylosift

• 37 families of ”elite” marker genes

congruent phylogenetic histories

represent about 1% of an average bacterial genome

• 16S and 18S ribosomal RNA genes

• mitochondrial gene families

• eukaryote-specific gene families

• viral gene families



Metaphlan2
Metagenomic Phylogenetic Analysis

• successor of Metaphlan (2012, Human Microbiome Project)

• markers and quasi-markers

coding sequences that unequivocally identify specific microbial
clades at the species level or higher taxonomic levels

markers : specific of the clade

quasi-markers : show a minimal number of sequence hits in
genomes outside the clade



virus : 38,800 markers + 23,000 pseudomarkers from 3500 genomes

short

read

and pseudo markers

pre-computed database of markers

+ clades (LCA in the taxonomy)

bacteria : 770,000 markers + 130,000 pseudomarkers from 13,000 genomes

archaea : 460,000 markers + 4,600 pseudomarkers from 300 genomes

eukaryotes : 22,400 markers + 2,550 pseudomarkes from 110 genomes



Metaphlan2 — pipeline

• mapping of short reads on the marker + pseudomarker
database (Bowtie2)

• computation of the relative abundance of each taxonomic unit
from presence of markers and pseudo-markers

normalization of the total number of reads in each clade by
the nucleotide length of its markers

• unclassified subclades : reads belonging to clades with no
available sequenced genomes are reported as an unclassified
subclade of the closest ancestor for which there is available
sequence data



SampleID Metaphlan2 Analysis k Bacteria 100.0

k Bacteria|p Acidobacteria 55.60886 k Bacteria|p Verrucomicrobia

36.2624 k Bacteria|p Proteobacteria 7.09312

k Bacteria|p Actinobacteria 1.03562

k Bacteria|p Acidobacteria|c Acidobacteriia 55.60886

k Bacteria|p Verrucomicrobia|c Opitutae 36.2624

k Bacteria|p Proteobacteria|c Gammaproteobacteria 3.60559

k Bacteria|p Proteobacteria|c Alphaproteobacteria 3.48753

k Bacteria|p Actinobacteria|c Actinobacteria 1.03562

k Bacteria|p Acidobacteria|c Acidobacteriia|o Acidobacteriales 55.60886

k Bacteria|p Verrucomicrobia|c Opitutae|o Puniceicoccales 36.2624

k Bacteria|p Proteobacteria|c Gammaproteobacteria|o Pseudomonadales 3.60559

k Bacteria|p Proteobacteria|c Alphaproteobacteria|o Rhodobacterales 3.48753

k Bacteria|p Actinobacteria|c Actinobacteria|o Actinomycetales 1.03562

k Bacteria|p Acidobacteria|c Acidobacteriia|o Acidobacteriales|f Acidobacteriaceae 55.60886

Kingdom|Phylum|Class|Order|Family|Genus|Species|Strain
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Approach 3 : all possible genes/genomes

• database : reference genomes + taxonomy

no structural annotation, no phylogenetic markers

• comparison of reads against the database : should be very
efficient

• main principle : split the data into k-mers (words of length k)

• Data : genomes sequences, reads sequences
• No prior knowledge on the genomes

• Examples : Kraken, Centrifuge, One codex, LMAT. . .



Example : Kraken

AAAAAAAAAAAAAAAAAAAAAAAAAAAAACA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAT

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

. . .

<< 431 = 4.6e18

all completed microbial genomes of the RefSeq database

+ LCA (lowest common ancestor)

1.4e9 disctinct k-mers (oct 2017)

47,768 bacteria + 1,034 archaea + 7,530 viruses

all 31-mers present in the database

Precomputed database



the taxonomy for each k-mer

1

1. short read ! overlapping k-mers

2. identification of the LCA in

3. assignation of the
read

4

10

1

Read assignation



Kaiju

Menzel, P. et al. (2016) Fast and sensitive taxonomic classification for

metagenomics with Kaiju. Nat. Commun. 7 :11257



• protein-level classification : reads are translated into amino
acid sequences

• database

NCBI RefSeq, proGenomes, non-redundant BLAST protein
database (optionally also including fungi and microbial
eukaryotes)

• comparison between the reads and the database

maximum exact matches (MEMs), optionally allowing
mismatches
Burrows-Wheeler Transform

• classification







assembly based

contigs

scaffolds

selection assembly

taxonomic analysis

functional analysis

marker genes

cleaned reads

quality control

reads

binning

read based



Assembly



 

Metagenomic assembly is impossible

• Two competing goals:

– assemble similar sequences from related genomes together

– do not assemble similar sequences from unrelated genomes

CATGCTGCCTCCCGTAGGAGTTTGGACCGTGTCTCAGTTCCAATGTG

TCCCGTAGGAGTCTGGTCCGTGTCTCAGTACCAGTGTGGGGGACCTTCCTC

GCCTCCCGTAGGAGTTTGGACCGTGTCTCAGTTCCAATGTGGGGGACCTT

Mihai Pop, Sergey Koren, Dan Sommer



Why it is so difficult

• presence of multiple closely related strains or species : hard to
distinguish sequencing errors and poymorphisms

• uneven abundance of organisms present in the sample : this
causes uneven sequencing depth of organisms present in the
sample

• presence of intragenomic repeats + intergenomics repeats
(horizontal transfer) : risk of chimera creation

• size of the data : Gb → Tb



De Bruijn Graph (reminder)

• rationale

• the genome can be reconstructed from the k-mers it contains
• reads are decomposed into k-mers

• graph

• nodes : k-mers present in the reads
• arcs : overlaps of length k − 1 between k-mers

• contig : simple path in the graph
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Application to community samples

• de Bruijn graph + multi-k principle
k = 21→ k = 55→ k = 77

• efficient construction and storage of the De Bruijn Graphs

• careful handling of mismatches

• careful extension of paths in the De Bruiijn Graphs

• intergenomic repeats solving with abundance

• metagenomics : MEGAHIT (2015), MetaSPAdes (2016)

• metatranscriptomics : MEGAHIT (2015)



What to do with contigs

• taxonomy classification : analogous to read-based approaches

• functional annotation : later in this lecture

• binning : just now



assembly based

contigs

scaffolds

selection assembly

taxonomic analysis

functional analysis

marker genes

cleaned reads

quality control

reads

binning

read based



Binning

• gathering sequences that are intended to belong to the same
species, or the same strain

• taxonomy dependent (supervised binning, taxonomic binning)

• database search, sequence comparison
• known species
• Phylosift, Metaphlan2, MG-Rast, MEGAN, MGnify. . .

• taxonomy independent (inherent statistics)

• sequence composition : nucleotide composition, codon usage
• contig coverage
• hybrid : machine learning



Nucleotide composition
Tetranucleotide usage patterns

 

940

 

H. Teeling 

 

et al.

 

© 2004 Blackwell Publishing Ltd, 

 

Environmental Microbiology

 

, 

 

6

 

, 938–947

 

Our systematic evaluation of the discriminatory power
of the 

 

D

 

(G 

 

+ 

 

C) and tetranucleotide-derived z-score cor-
relations revealed that, in the majority of cases, the dis-
criminatory power of the latter exceeded that of 

 

D

 

(G 

 

+

 

 C)
(Fig. 2). If one compares the fraction of fragment pairs
from two species that can be assigned to their original
genomes, then discrimination by the 

 

D

 

(G 

 

+

 

 C) was only
superior regarding the number of genome pairings with a
near to perfect discrimination (less than 4% non-assign-
able fragment pairs). If one includes, however, genome
pairings with a higher percentage of nonassignable frag-
ment pairs, tetranucleotide-derived z-score correlations
outperformed 

 

D

 

(G 

 

+

 

 C) considerably. For instance, the
number of genome pairs with at most 35% nonassignable
fragment pairs was 5131 (74.3%) when the 

 

D

 

(G 

 

+

 

 C) was
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score correlations were used (Fig. 3, dotted lines). Dis-
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(1.4%) genome pairings when tetranucleotide-derived z-
score correlations were applied.
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content is impossible in most cases, because both histograms largely 
overlap. In the lower part (B), histograms of Pearson’s correlation 
coefficients are shown for all possible pairwise comparisons of the 
fragment’s tetranucleotide-derived z-scores. Correlation within both 
genomes is high (0.69–0.96) while being low between them (0.06–
0.49). Discrimination of both genomes on the basis of tetranucleotide 
usage patterns is possible in all cases.

 

Fig. 2.

 

For all 6903 pairwise comparisons of the 118 bacterial 
genomes investigated, the percentage of non-assignable fragment 
pairs was calculated for the 
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z-score correlations (abscissa). Both, inter- and intragenome frag-
ment pairs were considered. The number of genome pairs having the 
indicated or a better (i.e. smaller) percentage of nonassignable frag-
ment pairs was plotted on the ordinate (cumulative plot). The hatched 
area indicates the region, where tetranucleotide-derived z-score cor-
relations provide a better resolution than the 
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C) and the dotted 
lines refer to the maximum difference between both methods.

• Escherichia coli and Neisseria meningitidis

• overlapping fragments of 40kb

• for each fragment, for each tetranucleotide : Z-score observed
frequency/theoretical frequency

• histograms of Pearson’s correlation coefficients : pairwise
comparisons of the fragment’s tetranucleotide-derived z-scores

Application of tetranucleotide frequencies for the assignment of genomic
fragments. Environmental Microbiology (2004) 6(9), 938–947



Codon usage

• the genetic code is redundant : several codons can code for
the same amino acid

• each species tends to show a preference for particular
synonymous codons

• clustering of sequences according to their codon bias



AAA 3.5 1.3
AAG 1.1 1.6
AAC 2.4 1.4
AAT 1.4 1.3
AGA 0.1 1.6
AGG 0.1 1.8
AGC 1.6 1.7
AGT 0.7 1.5
ACA 0.5 1.4
ACG 1.4 1.7
ACC 2.5 1.5
ACT 0.9 1.4
ATA 0.3 1.3
ATG 2.5 1.5
ATC 2.7 1.4
ATT 2.8 1.3

CAA 1.3 1.4
CAG 3.0 1.7
CAC 1.1 1.5
CAT 1.2 1.4
CGA 0.3 1.7
CGG 0.4 2.0
CGC 2.4 1.8
CGT 2.5 1.6
CCA 0.8 1.5
CCG 2.6 1.8
CCC 0.4 1.6
CCT 0.6 1.5
CTA 0.3 1.4
CTG 5.7 1.6
CTC 1.0 1.5
CTT 0.9 1.4

GAA 4.3 1.6
GAG 1.8 1.8
GAC 2.2 1.7
GAT 3.2 1.5
GGA 0.6 1.8
GGG 1.0 2.2
GGC 3.2 2.0
GGT 2.8 1.8
GCA 2.0 1.7
GCG 3.6 2.0
GCC 2.5 1.8
GCT 1.6 1.6
GTA 1.1 1.5
GTG 2.7 1.8
GTC 1.5 1.6
GTT 1.9 1.5

TAA * *
TAG * *
TAC 1.4 1.4
TAT 1.5 1.3
TGA * *
TGG 1.4 1.8
TGC 0.7 1.6
TGT 0.5 1.5
TCA 0.6 1.4
TCG 0.8 1.6
TCC 0.9 1.5
TCT 0.9 1.4
TTA 1.1 1.3
TTG 1.2 1.5
TTC 1.8 1.4
TTT 1.9 1.2

Codon Usage Frequence Table for E. coli

1st column : observed frequency
2nd column : theoretical frequency



Examples of the usage of Serine codons in different organisms

Codon E.coli D.melanogaster H.sapiens S.cerevisiae
AGT 3 1 10 5
AGC 20 23 34 4
TCG 4 17 9 1
TCA 2 2 5 6
TCT 34 9 13 52
TCC 37 48 28 33

(rounded percentages– source : D. Gautheret)



Contig coverage

• reads are mapped on the contigs

• similar coverage = similar abundance

• two contigs with similar coverage potentially come from same
underlying source population in the community



Hybrid approaches

• cocacola (2017)
COCACOLA : binning metagenomic contigs using sequence COmposition,
read CoverAge, CO-alignment and paired-end read LinkAge
Bioinformatics, Volume 33, Issue 6, 15, pages 791–798

• concoct (2014)
Binning metagenomic contigs by coverage and composition Nature
Methods volume 11, pages 1144–1146

• MyCC (2016)
Accurate binning of metagenomic contigs via automated clustering
sequences using information of genomic signatures and marker genes. Sci
Rep. 2016 ; 6 : 24175.

• MetaBat (2015)
MetaBAT, an efficient tool for accurately reconstructing single genomes
from complex microbial communities. PeerJ 2015 ; 3 : e1165.
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Functional analysis



Functional analysis : how to annotate genes in genomes ?
Three main approaches

• de novo prediction of coding regions

• homology based annotation

• motif based annotation



Prediction of coding regions

how can we find genes in prokaryotic genomes ?

Prokaryotic Gene Structure

● Prokaryotic genes are intronless, organised in operon that encode for polycistronic 
RNAs encoding multiple proteins

● Regulated by DNA elements located relatively close to genes or operons.

By http://iweb.langara.bc.ca

• identification of ORFs (start + stop codon)

• codon usage bias
differences in the frequency of occurrence of synonymous
codons in coding DNA compared to non-coding DNA, and
between species
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By http://iweb.langara.bc.ca
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differences in the frequency of occurrence of synonymous
codons in coding DNA compared to non-coding DNA, and
between species



How to adapt these approaches to
metagenomic/metranscriptomic reads/contigs ?

• short reads : codon usage bias

• contigs : ORF (codons start, stop) + codon usage bias

• +resistant to sequencing errors

FragGeneScan

FragGeneScan

• predict protein-coding regions from environmental sequences

• HMM combining

codon usage bias + start/stop codon models (like Glimmer or
Genemark)

sequencing error models

• included in the MG-Rast and EBI pipelines

MetaGeneMark

http://exon.gatech.edu/meta_gmhmmp.cgi

http://exon.gatech.edu/meta_gmhmmp.cgi


Homology based annotation

• alignment of short reads/contigs to a large database of
annotated protein sequences

• databases : Eggnog, SEEDS, KEGG, Interpro, swissprot, . . .

• choice of the alignment tool, DNA/protein

pre-NGS tools : BlastX, BLAT especially designed for gene or
genome comparison

Diamond : optimized to deal with short reads
order of magnitude faster than BlastX for this kind of data (x
1000)

Alignment tools

Query : large set of short DNA reads
Reference : large protein database

• Pre-NGS tools : BlastX, BLAT

• Diamond

� optimized to deal with sort reads
� order of magnitude faster than BlastX for this kind of data

(⇥ 1000)



Motif based annotation

• motif : signature for a given protein family

• models : prosite expression, matrix, profile Hidden Markov
Model



Modélisation des motifs biologiques

105



Interpro
Protein sequence analysis & classification

• http:// www.ebi.ac.uk/interpro

• developed at EBI since 1999 (version 70)

• signatures for protein families, domains and functional sites
collected from 14 databases

35 020 entries based on 48 938 signatures

• mappings of InterPro entries to Gene Ontology (GO) terms
(InterPro2GO)



Pipelines for read-based strategies

Taxonomic+functional analyses



• MG-RAST

• developed since 2007 (University of Chicago)
• supports amplicons (16S, 18S, and ITS), metagenomics and

metatranscriptomics
• http://metagenomics.anl.gov

• MEGAN

• developed since 2007 (U. Tübingen)
• Alignment of the reads on the database : Diamond
• Taxonomic classification : LCA, lowest common ancestor

against NCBI nr
• Functional analysis : mapping to KEGG, SEED, EggNOG and

InterPro2GO

• MGnify



MGnify
EBI metagenomics

Submit, analyse, discover and compare microbiome data since 2013
https://www.ebi.ac.uk/metagenomics

https://www.ebi.ac.uk/metagenomics




What can you do with MGnify ?

• Submit microbiome studies for analysis : amplicon,
metagenomic, metatranscriptomic or assembled data for
analysis

• Request analysis of any publicly available data

• Explore a diverse range of analysed microbiome studies

• Visualise and download analysis results

• Access the raw data from the European Nucleotide Archive
(ENA).



Data structuration in MGnify

• MGYS XXXXXX – study / project
Each project contains one or more (biological) samples

• sample (ENA identifier)
Each sample can have one or more experiments associated
with it (such as metagenomic, amplicon or
metatranscriptomic).

• run (ENA identifier)
Set of reads for one experiment

• MGYA XXXXXX – analysis
Results obtained from processing a run file



MGnify : amplicon analysis pipeline





MGnify : raw reads analysis pipeline





Mgnify : assembly analysis pipeline

• Assembly

• submission of raw reads (with host sequences removed) to ENA
• quality control + additional host contamination removal

process
• assembly with metaSPAdes (paired reads) or SPAdes (single

reads)

• Contig analysis : assembly pipeline









Pathways : KEGG

KEGG

• http://www.genome.jp/kegg/

• collection of databases : genomes, genes, metabolic pathways,
diseases, . . .

• KO entries : group of genes representing functional orthologs
in the molecular networks

• http://www.genome.jp/kegg

• collection of databases : metabolic pathways, genomes, genes,
diseases, . . .

• KO entries : group of genes representing functional orthologs
in the molecular networks

• available in MGnify for assemblies



Data submission : ENA Webin

• data is stably archived

• accession numbers (prerequisite for many publications)

• active submission helpdesk

• training materials

”A major aim in the development of this resource has been to
encourage metagenomics researchers to openly share their data as
widely as possible, and to also describe their data in sufficient
detail such that other scientists are able to extract maximum value
from it.”



Conclusion

MetaGeneMark

MetaSPades

(one codex)

Kraken

MetaPhlan2

PhyloSift

Kaiju

Interpro (EBI) FragGeneScan (EBI)

contigs

scaffolds

selection assembly

taxonomic analysis

marker genes

cleaned reads

binning

read based assembly based

functional analysis



• fast evolving field

• influence of the nature of the data

• sequencing technology and quality of the data
• complexity of the community
• coverage

• balance between performances and usability



Taxonomic classification
which tool is the best ? with which parameters ?

Which tool is the best ? With which parameters ?

2016, MEGAN (older version), MG-RAST, One Codex

2017, 11 tools (including CLARK, Kraken, LMAT, Metaphlan2,
PhyloSift, MGAN+Diamond)

2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)

2016, MEGAN (older version), MG-RAST, One Codex
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2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)

2016, 14 tools (including CLARK, MetaPhan2, One codex, EBI,
MG-Rast, kraken, LMAT, Megan)



Shotgun sequencing versus amplicon sequencing

Comparing 16S rRNA Marker Gene and Shotgun Metagenomics
Datasets in the American Gut Project Using State of the Art
Tools, E.R. Hyde, J. Sanders, A. Tripathi, Q. Zhu, R. Knight, 2017

”There is some consistency between the 16S and shotgun
metagenomics approaches although some obvious differences are
noted.”

Large-scale differences in microbial biodiversity discovery between
16S amplicon and shotgun sequencing, Michael Tessler et al.,
Scientific Reports 2017

”Overall the amplicon data were more robust across both
biodiversity and community ecology analyses at different
taxonomic scales.”



Assembly and binning
CAMI Challenge

• community-driven initiative

• 700 newly sequenced microorganisms and 600 novel viruses
and plasmids

• 3 artificial communities
low, medium, high complexity
presence of multiple, closely related strains, plasmid and viral
sequences and realistic abundance profiles

• assemblers : MEGAHIT, Minia, Meraga, A*, Ray Meta, Velour

• binners : MyCC, MaxBin 2.0, MetaBAT, MetaWatt,
CONCOCT2

• https://data.cami-challenge.org,
https://data.cami-challenge.org/cami2

Critical Assessment of Metagenome Interpretation—a benchmark of
metagenomics software Nature Methods volume 14, pages 1063–1071(2017)

https://data.cami-challenge.org
https://data.cami-challenge.org/cami2

