

Blast

Basic Local Alignment Search Tool

Adapted from the courses of the Bonsai team,

CRIStAL UMR 9189

Sylvain.legrand@univ-lille.fr

Introduction

challenge

• We assumed that you have a **nucleotide or protein sequence** obtained from a biological sample or from a database

challenge

- You want to know if the sequence you have obtained is already known or is similar to other sequences in the databases
- A **sequence similarity searc**h often provides the first information about a new nucleotide or protein sequence
- → **inferring the function** from similar sequences

challenge

• We have:

```
a query sequence q
a database T = {t1, ...,tn}
```

- What we want: to find **significant alignments** between *q* and *ti*
- Classical algorithms (e.g. Smith and Waterman's local alignment) do not work: too time consuming, need to find **workarounds**

Blast, generalities

- Blast (NCBI definition) : The Basic Local Alignment Search Tool (BLAST) finds regions of **local similarity between sequences**. The program compares nucleotide or protein sequences to sequence databases and calculates the **statistical significance** of the alignments
- Blast can be used to infer functional and evolutionary relationships between sequences and can also help identify members of a gene family

• Blast uses **heuristics*** to deliver results quickly

*A heuristic is a computational method that quickly provides a feasible solution, not necessarily an optimal one, it may miss some results

Blast, generalities

- Since most proteins are **modular** (composed of functional domain(s)), Blast is made to find these domains between different sequences .
- The algorithm also allows the alignment between mRNA and genomic sequences
- However, if 2 sequences are expected to be aligned to their full length (global alignment), it is possible that Blast will only return the most conserved parts of this alignment

History

- First version released by NCBI in 1990 (Altschul et al. 1990)
- This version only performs ungapped alignments, but provides a p-value that allows the user to assess the significance of the results
- A version allowing **gaps** (Blast2) appeared in 1997 (Altschul et al. 1997) and included the **PSI Blast** (see below)
- In 2009, NCBI released a new version of Blast (**BLAST+**) (Camacho et al. 2009)
- Currently BLAST+2.11.0 released (April 2021)

 <u>1st step</u>: define from the query sequence q a list of words (seeds) of defined size w (default size of 11 for DNA and 3 for proteins)

• Particularity for **proteins**

- Clarification on similar words
- For each word of size w=3, Blast generates the neighbouring words using a BLOSUM62 matrix with a score threshold T=11
- Words with 3 amino acids: 20³ possible alignments !

- The neighbouring words are aligned with LEH and the alignment score is calculated from the BLOSUM matrix62
- Only words with a score \geq to the threshold *T* are conserved

Substitution matrix

- A substitution matrix is used to associate a score to each pair of residues in an alignment
- For nucleotide sequences, identical penalties are generally used for all substitutions

 For a given alignment, the score is the sum of the scores of each pair of residues

Substitution matrix

- For protein sequences, **BLOSUM or PAM** matrices are used. They provide different scores depending on the substitutions
- Positive scores indicate frequent ("accepted") substitutions, i.e. substitutions observed more frequently than would be expected by chance
- **Negative values** indicate rare mutations, which are observed less frequently than at random. This is an indication of negative selection, suggesting that these mutations are unfavourable to the function of the protein

BLOSUM62 matrix

From J. van Helden, Université d'Aix-Marseille

- <u>Step 2</u>: Search for exact matches between the words in the list (DNA) or the extended list (proteins) and the *ti* sequences in the database
- These alignments are *hits*
- A *hit* is therefore a "common" word of size *w* (and of score greater than *T* in the case of proteins) between the sequences *q* and *ti*

- <u>**3rd step:**</u> each hit is extended to the left and to the right: the extension is stopped when the *hit* score decreases by more than *X* (*X*-drop)
- Schematically

- Each extended hit forms an **LMSP**: Localy Maximal scoring Segment Pair
- Blast conserved only LMPSPs with a score higher than a given threshold score: the **HSPs**: High scoring Segment Pairs
- The most significant HSP is called MSP: Maximum scoring Segment Pair

 Clarification on X-drop Query q: Y A N C Q E H K M G S
 Subject ti : D A P C Q E H K R G W P N D C

• Clarification on X-drop

Gapped-Blast (BLAST2)

• Based on 2 hits with a maximum distance of *A* (BLASTP). To keep a good sensitivity, *T* is lowered from 13 to 11

- Extend the hits by allowing gaps
- This method is **faster** than the previous one

Significance of alignments

Significance of alignments

• Two sequences can always be aligned

- There is always one (at least) **best S-score** alignment between two sequences (an MSP)

• Issues

- Is this score high enough to prove homology?

- Can we find a MSP with a better score in two random sequences?

Significance of alignments

- *S* is the score obtained by the alignment of 2 sequences
- The **p-value** measures the **probability** that 2 random sequences of the same length and composition have an MSP of score \geq S
- The E-value measures the esperance E of the number n of MSPs of score ≥ S in 2 random sequences of the same length and composition

 \rightarrow For example, if the E-value is equal to 10 for a HSP with score S, it means that 10 HSPs with score \geq S can be found by chance! So probably your alignment is not significant!

Calculation of the E-value

• According to Karlin and Altschul, 1991

$$E = Kmne^{-\lambda s} \qquad p = 1 - e^{-E}$$

With *m* the size of the sequence *q*, *n* the size of the database, *S* the score of the HSP, *K* and *lambda* depend on the score matrix, *K* can be adjusted according to the cost of the gaps

• If *S* is the score for a hit

• The bit-score (normalized score) is:
$$S' = \frac{\lambda s - lnK}{ln2}$$

• The E-value is then: $E = mn2^{-S'}$

Variation in E-value

- if the size of the query sequence increases: the E-value ...
- If the size of the database is divided by two: the E-value ...
- If the score increases: the E-value ...
- What bit-score to obtain an E-value of 0.05 for a sequence of length 250 and a bd of length 50000000 ?
- If we increase the E-value to 0.01, what will be the bit-score?

Variation in E-value

- if the size of the query sequence increases: the E-value increases
- If the size of the database is divided by two: the E-value decreases
- If the score increases: the E-value decreases
- What bit-score to obtain an E-value of 0.05 for a sequence of length 250 and a bd of length 50000000 ? 38 bits
- If we increase the E-value to 0.01, what will be the bit-score? 40 bits

Run Blast!

Home page

Web BLAST

Query \ Database	nucléique	protéique	nucléique traduit
nucléique	blastn	x	x
protéique	x	blastp	tblastn
nucléique traduit	x	blastx	tblastx

ftp://ftp.ncbi.nlm.nih.gov/pub/factsheets/HowTo_BLASTGuide.pdf

Home page

Specialized searches

			1	2	3
	BLAST [®] » bla	stn suite Home	Recent Results	Saved Strategies	Help
		Standard Nucleotide BLAST			
4	blastn blasto blas	tx tblastn tblastx			
		BLASTN programs search nucleotide databases using a nucleotide query, mo	re	Reset page	Bookmark
	Enter Query S	equence			
	Enter accession n	umber(s), gi(s), or FASTA sequence(s) (a) <u>Clear</u> Query subrange (a)			
E		From			
С		То			
	Or, upload file	Choisissez un fichier Aucun fichier choisi 🛞			
	Job Title				
		Enter a descriptive title for your BLAST search 😡			
	Align two or mo	ore sequences 😡			
	Choose Searc	h Set			
	Database	Human genomic + transcript Mouse genomic + transcript Others (nr etc.):			
		Nucleotide collection (nr/nt)			
6	Organism	Enter organism name or id-completions will be suggested Exclude +			
U	optional	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown ()			
	Exclude	Models (XM/XP) Uncultured/environmental sample sequences			
	Limit to	Sequences from type material			
	Optional Entroz Queny	You Tinte Create custom database			
	Optional	Enter an Entrez query to limit search @			
	Program Solo	tion			
	Ontimize for				
_	optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) 			
7		Somewhat similar sequences (blastn)			
		Choose a BLAST algorithm @			
	BLAST	Search database Nucleotide collection (nr/nt) using Megablast (Optimize for highly similar sequences of the second	ences)		
0					
A I	+ Algorithm parame	ters			

- **1 Recent Results:** The results of your searches over the last 36 hours. If you are registered on MyNCBI, you can access your results from any machine. If not, only searches from the active browser session are kept
- 2 Saved Strategies : allows you to save the parameters of a Blast search in order to restart a search with the same parameters later (connection to MyNCBI required)
- **3 Help :** documentations, links and tutorials
- 4 : type of Blast

• 5 Enter Query Sequence

Copy/paste or upload your query sequence(s). You can also define a search range in your sequences. You can give a title to your search. The "Align two or more sequences" function allows you to compare sequences between them without using a database

6 Choose Search Set

Select your database. You can limit your search to specific organisms or exclude organisms. You can exclude sequences produced from genome annotation projects or from noncultured/bred organisms. You can limit your search to model specimens and strains

• 7 Program Selection

Allows you to optimise your search for different scenarios (e.g. intra or inter species searches)

• 8 Algorithm parameters

This is the place to modify the parameters of the BLAST agoritm that has been selected (see dedicated section)

Nucleotide Blast

Program Sele	ection
Optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) Somewhat similar sequences (blastn) Choose a BLAST algorithm (g)

- Megablast:
- a Faster Blast when searching for high similarity
- Implementation: use larger word sizes (28 vs 11)

- To be reserved when searching for very similar sequences or when we want to know if our sequence is in the database

Nucleotide Blast

- Discontigous megablast:
- Use a spaced seed rather than an exact word (contiguous seed)
- Useful for inter-species comparisons

- Example of contiguous seed: 1 1 1 1 1: an exact word (without mismatch) of 5 nucleotides

- Example of spaced seed: 1 0 1 1 0 1 1: a word of 7 nucleotides, positions 2 and 5 may represent mismatches

Spaced seeds vs contiguous seeds

- We consider a sequence q of length /=26
 A seed (word) of size 6
 - We can therefore define a maximum of 26-6+1=21 seeds
 - The sequence *ti* is identical to *q*: therefore all seeds can be aligned with *ti*

```
ATCTGATCGATCGATCGATCGATCGA : q
  ATCTGATCGATCGATCGATCGATCGA : ti
111111
 111111
  111111
   111111
    111111
     111111
     111111
       111111
       111111
        111111
         111111
          111111
           111111
            111111
             111111
              111111
               111111
                111111
                 111111
                  111111
                   111111
```


Spaced seeds	<i>vs</i> contiguous seeds
ATCTGATCGATCGATCGATCGA	ATCTGATCGATCGATCGATCGA
ATCTGATCGATCGATCGATCGA	ATCTGATCGATCGATCGATCGATCGA
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	
111111	

Spaced seeds behave in the same way as contiguous seeds in this example

Spaced seeds vs contiguous seeds

• Now let's introduce a mismatch between q and ti...

```
ATCTGATCGATCGATCGATCGATCGA
                                   ATCTGATCGATCGATCGATCGATCGA
ATCTGCTCGATCGATCGATCGATCGA
                                   ATCTGCTCGATGGATGGATCGTTCGA
111111
                                   11101011
 111111
                                    11101011
                                     11101011
 111111
  111111
                                      11101011
                                       11101011
   111111
    111111
                                        11101011
                 Some seeds (in red)
                                         11101011
     111111
                 are lost
      111111
                                          11101011
       111111
                                           11101011
        111111
                                           11101011
                 Spaced seeds can be
         111111
                                            11101011
                 permissive
          111111
                                             11101011
           111111
                                              11101011
            111111
                                               11101011
             111111
                                                11101011
              111111
                                                 11101011
               111111
                                                  11101011
                                                   11101011
                111111
                 111111
                                                    11101011
                  111111
                   111111
```


Spaced seeds *vs* contiguous seeds

• Then, Let's introduce more mismatches between q and ti

ATCTGATCGATCGATCGATCGATCGATCGA	A ATCTGATCGATCGATCGATCGATCGA
. . .	
ATCTG C TCGAT G GAT G GATCG T TCGA	A ATCTG C TCGAT G GAT G GATCG T TCGA
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
¹¹¹¹¹¹ 111111 In th	at case the ti 11101011 11101011
111111 Sequ	ence could only 11101011
111111 have	been found by 11101011
¹¹¹¹¹¹ a spa	aced seedl 11101011
111111 a spe	<u>11101011</u>
111111	11101011
111111	11101011
111111	11101011
111111	11101011
111111	11101011
11111	11101011
111111	11101011
111111	
11111:	1

Protein Blast

Program Se	lection
Algorithm	 blastp (protein-protein BLAST) PSI-BLAST (Position-Specific Iterated BLAST) PHI-BLAST (Pattern Hit Initiated BLAST) DELTA-BLAST (Domain Enhanced Lookup Time Accelerated BLAST) Choose a BLAST algorithm (Q)

• PSI-BLAST :

- Initial search with blastp

- Construction of a multiple alignment and then a profile from the best hits \rightarrow position-specific score matrix (PSSM)

- New search with the profile

Protein Blast

• PHI-BLAST :

- Input: a protein sequence and a motif (regular expression)
- Restriction of the library to sequences for which the motif is found

• DELTA-BLAST

- Use of PSSMs built from a NCBI CDD (conserved domain database)
- Faster than PSI-BLAST, also more sensitive

Blast results

• Structured results: a flexible output

Madden, 2013

• Different format and export possibilities...

Save Search Strategies	▼ Formatting options ▼ Download You Tube How to read this page	Blast re								
	Formatting options Refor	mat								
Show	Alignment as HTML COld View Reset form to defaults									
Alignment View	Pairwise \$									
Display	Graphical Overview NCBI-gi CDS feature	0								
Masking	Character: Lower Case 🔶 Color: Grey 🛊	0								
Limit results	Descriptions: 500 \$ Graphical overview: 100 \$ Line length: 60 \$	0								
	Organism Type common name, binomial, taxid, or group name. Only 20 top taxa will be shown.									
	Enter organism name or idcompletions will be suggested Exclude									
	Entrez query:									
	Expect Min: Expect Max:									
	Percent Identity Min: Percent Identity Max:	0								
Format for	✓ PSI-BLAST with inclusion threshold: 0.005	0								
	Download									
	Alignment									
Tex	t XML ASN.1 JSON Seq-align Hit Table(text) Hit Search Strategies PssmWithParameters									
Table	(csv) Multiple-file XML2 Single-file XML2 Multiple-file ASN.1 ASN.1									

• Graphic summary

• Descriptions

-	-					
	D	66	cri	nt	10	ns
_	-	00		2.0		110

Alignments Download - GenPept Graphics Distance tree of results Multiple alignment									
	Description	Max score	Total score	Query cover	E value	Ident	Accession		
	Ent-copalyl diphosphate synthase [Arabidopsis thaliana]	1732	1732	100%	0.0	100%	NP_192187.1		
	GA1 [Arabidopsis thaliana]	1625	1625	100%	0.0	95%	OA099244.1		
	Chain A, Crystal Structure Of Ent-Copalyl Diphosphate Synthase From Arabidopsis Thaliana In Complex With (S)-15-Aza-14,15-I	1551	1551	89%	0.0	100%	3PYA A		
	Chain A, Crystal Structure Of Ent-copalyl Diphosphate Synthase From Arabidopsis Thaliana In Complex With (s)-15-aza-14,15-di	1547	1547	89%	0.0	99%	4LIX A		
	hypothetical protein CARUB_v10003225mg [Capsella rubella]	1501	1501	96%	0.0	89%	XP_00628966		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic [Camelina sativa]	1487	1487	99%	0.0	88%	XP_01045592		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic-like [Camelina sativa]	1485	1485	99%	0.0	88%	XP_01042253		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic-like [Camelina sativa]	1471	1471	99%	0.0	88%	XP_01043029		
	copalyl diphosphate synthase [Arabis alpina]	1467	1467	100%	0.0	85%	KFK30883.1		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic-like [Brassica napus]	1460	1460	100%	0.0	84%	XP_01368852		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic [Brassica oleracea var. oleracea]	1458	1458	100%	0.0	84%	XP_01360719		
	hypothetical protein EUTSA_v10029352mg [Eutrema salsugineum]	1456	1456	95%	0.0	88%	XP_00639650		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic-like [Brassica rapa]	1438	1438	100%	0.0	83%	XP_00911125		
	BnaA03g26050D [Brassica napus]	1383	1383	100%	0.0	82%	CDX90925.1		
	BnaC03g30630D [Brassica napus]	1365	1365	96%	0.0	83%	CDY17991.1		
	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic-like [Brassica napus]	1362	1362	100%	0.0	80%	XP 01374079		
	hypothetical protein ARALYDRAFT_352546 [Arabidopsis lyrata subsp. lyrata]	1342	1476	95%	0.0	91%	XP_00287280		
	BnaC09g00230D [Brassica napus]	1169	1610	100%	0.0	86%	CDY21917.1		
2	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic-like [Brassica rapa]	1075	1075	78%	0.0	81%	XP 00913595		
2	PREDICTED: ent-copalyl diphosphate synthase, chloroplastic [Tarenaya hassleriana]	1030	1030	100%	0.0	60%	XP 01052272		

☐ Alignments

• Alignments

Ent-co	palyl dip	hosphat	e synthase	[Aral	bidopsis	s tha	iana]			
Sequen	ce ID: ref	NP_1921	87.1 Lengt	h: 802	2 Numbe	er of N	latches: 1			
> See	5 more tit	le(s)								
Range 1	1: 1 to 80	2 GenPept	Graphics						Vext Match	Previous Mate
Score		Expect	Method				Identities		Positives	Gaps
1732 b	oits(4076)	0.0	Composition	nal m	atrix adj	ust.	802/802	100%)	802/802(100%	6) 0/802(09)
Query	1 MS	SLQYHVLN SLOYHVLN	SIPSTTFLSS	TKTT	ISSSFLT	ISGS	PLNVARDI	SRSGSI	HCSKLRTQEYIN	60
Sbjct	1 M8	SLQYHVLN	SIPSTTFLSS	TKTT	ISSSFLT	ISGS	PLNVARDI	SRSGSI	HCSKLRTQEYIN	60
Query	61 S(DEVOHDLP	LIHEWQQLQG	EDAP	OISVGSN	SNAF	KEAVKSVI KEAVKSVI	TILRNL	TDGEITISAYDT	120
Sbjct	61 S(DEVQHDLP	LIHEWQQLQG	EDAP	QISVGSN	SNAF	KEAVKSVI	TILRNL	TDGEITISAYDT	120
Query	121 AV	WALIDAG	DKTPAFPSAV	KWIA	ENQLSDG	SWGD	AYLFSYHI	RLINTL	ACVVALRSWNLF	180
Sbjct	121 AV	VALIDAG	DKTPAFPSAV	KWIA	ENQLSDG	SWGD	AYLFSYHI	RLINTL	ACVVALRSWNLF	180
Query	181 PI	QCNKGIT	FFRENIGKLE	DEND	EHMPIGF	EVAF	PSLLEIA	GINIDV	PYDSPVLKDIYA	240
Sbjct	181 PI	QCNKGIT	FFRENIGKLE	DEND	EHMPIGE	EVAF	PSLLEIA	GINIDV	PYDSPVLKDIYA	240
Query	241 KI	KELKLTRI	PKEIMHKIPT	TLLH	SLEGMRD	LDWE	KLLKLQS	DGSFLF	SPSSTAFAFMQT	300
Sbjct	241 KI	KELKLTRI	PKEIMHKIPT	TLLH	SLEGMRD	LDWE	KLLKLQS	DGSFLF	SPSSTAFAFMQT	300
Query	301 RI	OSNCLEYL OSNCLEYL	RNAVKRFNGG	VPNV	FPVDLFE	HIWI	VDRLQRL	ISRYFE	EEIKECLDYVHR	360
Sbjct	301 RI	SNCLEYL	RNAVKRFNGG	VPNV	FPVDLFE	HIWI	VDRLQRLO	ISRYFE	EEIKECLDYVHR	360
Query	361 Y	TDNGICW	ARCSHVQDID	DTAM	AFRLLRO	HGYO	VSADVFK	FEKEGE	FFCFVGQSNQAV	420
Sbjct	361 Y	TDNGICW	ARCSHVQDID	DTAM	AFRLLRQ	HGYQ	VSADVFK	FEKEGE	FFCFVGQSNQAV	420
Query	421 TO	MENLYRA	SQLAFPREEI	LKNA	KEFSYNY	LLEK	REREELII	KWIIMK	DLPGEIGFALEI	480
Shigt	421 TO	SMFNLYRA	SQLAFPREEI	LKNA	KEFSYNY	LLEK	REREELII	KWIIMK	DLPGEIGFALEI	480
bb jee	421 10	SHENDING	SQUATTREET	LINIA	KEF SINI.	DDER	KEKEEDI.	ACT I I I I I I	DEFGEIGERDEI	400
Query	481 P	VYASLPRV VYASLPRV	ETRFYIDQYG	GEND	VWIGKTL	YRMP	YVNNNGYI	ELAKOD	YNNCQAQHQLEW YNNCOAOHOLEW	540
Sbjct	481 P	VYASLPRV	ETRFYIDQYG	GEND	VWIGKTL	YRMP	YVNNNGYI	ELAKQD	YNNCQAQHQLEW	540
Query	541 D	FORWYEE	NRLSEWGVRR	SELL	ECYYLAA	ATIF	ESERSHE	MVWAKS	SVLVKAISSSFG	600
Sbjct	541 D	IFQKWYEE	NRLSEWGVRR	SELL	ECYYLAA	ATIF	ESERSHE	MVWAKS	SVLVKAISSSFG	600
Query	601 E	SSDSRRSF	SDOFHEYIAN	ARRS	DHHFNDR	NMRL	DRPGSVQ	SRLAGV	LIGTLNOMSFDL	660
Sbjct	601 E	SSDSRRSF	SDQFHEYIAN	ARRSI	DHHFNDR	NMRL	DRPGSVQ	SRLAGV	LIGTLNQMSFDL	660
Ouerv	661 FI	SHGRDVN	NLLYLSWGDW	MEKW	KLYGDEG	EGEL	MVKMITL	KNNDLT	NEETHTHEVRLA	720
Chiat	FI FI	ASHGRDVN	NLLYLSWGDW	MEKW	KLYGDEG	EGEL	MVKMIIL	KNNDLT	NFFTHTHFVRLA	720
SDJCt	661 FI	SHGRDVN	NLLYLSWGDW	MEKW	KLYGDEG	EGEL	MVKMIIL	KNNDLT	NFFTHTHFVRLA	720
Query	721 EI	INRICLP	ROYLKARRND	EKEK	TIKSMEK	EMGK	MVELALSI	SDTFRD	VSITFLDVAKAF	780
Sbjct	721 E	IINRICLP	RQYLKARRND	EKEK	TIKSMEK	EMGK	MVELALSI	SDTFRD	VSITFLDVAKAF	780
Query	781 Y	FALCODH	LOTHISKVLF	QKV	802					
Shict	781 1	FALCGDH	LOTHISKVLF	OKV	802					

	Download v GenPept Graphics Sort by: E value		
 Alignments 	hypothetical protein ARALYDRAFT_352546 [Arabidopsis lyrata s Sequence ID: <u>ref[XP_002872809.1</u>] Length: 742 Number of Matches: 2 ▶ <u>See 1 more title(s)</u>	ubsp. lyrata]	
	Range 1: 1 to 697 GenPept Graphics	Vext Match	Previous Match
	Score Expect Method Identities 1342 bits(3158) 0.0 Compositional matrix adjust. 640/700(91%)	Positives 648/700(92%)	Gaps 5/700(0%)
	Query 1 MSLQYHVLNSIPSTTFLSSTKTTISSSFLTISGSPLNVARDKSRSGS	IHCSKLRTQEYIN	60
	Sbjct 1 MSLQYHALNSIQSTNFLSSTKTTLSSSFLTISGSPLNVARDKPRSGS	IYCSKLRTQEYTT	60
	Query 61 SQEVQHDLPLIHEWQQLQGEDAPQISVGSNSNAFKEAVKSVKTILRN SQEVQHDLPLI+ WQQLQ EDAPQIS+GSN NA EAVKSVK ILRN	LTDGEITISAYDT	120
	Sbjct 61 SQEVQHDLPLIQ-WQQLQREDAPQISIGSNNNAIEEAVKSVKSILRN	LTDGEITISAYDT	119
	Query 121 AWVALIDAGDKTPAFPSAVKWIAENQLSDGSWGDAYLFSYHDRLINT AWVALIDAGDKTPAFPSAVKWIAENQLSDGSWGDAYLFSYHDRLINT	LACVVALRSWNLF	180
	Sbjct 120 AWVALIDAGDKTPAPPSAVKWIAENQLSDGSWGDAYLFSYHDRLINI	LACVVALRSWNLF	179
SPs	Query 181 PHQCNKGITFFRENIGKLEDENDEHMPIGFEVAFPSLLEIARGINID PHQC KGITFFRENIGKLEDENDEHMPIGFEVAFPSLLEIAR INID Shigt 190 PHOCUKCITFFFENICKI FFENDEUMPIGFEVAFPSLIFIARFINIT	VPYDSPVLKDIYA VPYDSPVLKDIYA	240
\backslash	Ouerv 241 KKELKLTRIPKEIMHKIPTTLLHSLEGMRDLDWEKLLKLOSODGSFI	FSPSSTAFAFMOT	300
\backslash	KKELKLTRIPKEIMHKIPTTLLHSLEGMRDLDWEKLLKLQSQDGSFI Sbjct 240 KKELKLTRIPKEIMHKIPTTLLHSLEGMRDLDWEKLLKLQSQDGSFI	FSPSSTAFAFMQT	299
\backslash	Query 301 RDSNCLEYLRNAVKRFNGGVPNVFPVDLFEHIWIVDRLQRLGISRYF	EEEIKECLDYVHR	360
\backslash	RDSNCL YLRNAVKRFNGGVPNVFPVDLFEHIWIVDRLQRLGISRYF Sbjct 300 RDSNCLRYLRNAVKRFNGGVPNVFPVDLFEHIWIVDRLQRLGISRYF	EEEIKECLDYVHR EEEIKECLDYVHR	359
\backslash	Query 361 YWTDNGICWARCSHVQDIDDTAMAFRLLRQHGYQVSADVFKNFEKEG	EFFCFVGQSNQAV	420
\backslash	Sbjct 360 YWTDKGICWARCSHVQDIDDTAMAFRLER HGTQVSADVFKNFEKEG	EFFCFVGQSNQAA	419
\backslash	Query 421 TGMFNLYRASQLAFPREEILKNAKEFSYNYLLEKREREELIDKWIIM TGMFNLYRASOLAFPRE+ILKNAKEFS YL KRER+ELIDKWIIM	KDLPGEIGFALEI	480
\backslash	Sbjct 420 TGMFNLYRASQLAFPREDILKNAKEFSNKYLQGKRERDELIDKWIIM	KDLPGEIGFALEI	479
\backslash	Query 481 PWYASLPRVETRFYIDQYGGENDVWIGKTLYRMPYVNNNGYLELAKQ PWYASLPRVETRFYIDQYGGENDVWIGKTLYRMPYVNNNGYLELAKQ	DYNNCQAQHQLEW	540
\backslash	Sbjct 480 PWYASLPRVETRFYIDQYGGENDVWIGKTLYRMPYVNNNGYLELAKQ	DYNNCQALHQLEW	539
\backslash	Query 541 DIFQKWYEENRLSEWGVRRSELLECYYLAAATIFESERSHERMVWAK D FOKWYEENRL EWGVRRSELLECY+LAAATIFESERSHER VWAK	SSVLVKAISSSFG	600
\backslash	Sbjct 540 DTFQKWYEENRLNEWGVRRSELLECYFLAAATIFESERSHERIVWAK	SSVLVKAI-SSFG	598
$\langle \rangle$	Query 601 ESSDSRRSFSDQFHEYIANARRSDHHFNDRNMRLDRPGSVQASRLAG SSDSRRSFS+OFH YIANARRSDHHFN R MRLDRPGSVQASRL G	VLIGTLNOMSFDL +LIGTLNOMSFDL	660
$\langle \rangle$	Sbjct 599 KSSDSRRSFSEQFHKYIANARRSDHHFNGRSMRLDRPGSVQASRLVG	ILIGTLNQMSFDL	658
\backslash	Query 661 FMSHGRDVNNLLYLSWGDWMEKWKLYGDEGEGELMVKM 698 FMSHGRDV NLLY S D EK E E MV +		
	Sbjct 659 FMSHGRDVYNLLYQSARRNDEKEK-TIRSMETEMEKMVEL 697		
	Range 2: 671 to 741 GenPept Graphics	h 🔺 Previous Matc	h 🛕 First Match
\setminus	Score Expect Method Identities F	ositives Ga	ps
	133 bits(307) 1e-27 Compositional matrix adjust. 63/71(89%) 6	3/71(88%) 0/2	71(0%)
	Query 732 YLKARRNDEKEKTIKSMEKEMGKMVELALSESDTFRDVSITFLDVAK Y ARRNDEKEKTI SME EM KMVELALSESDTFR VSITFLDVAK	AFYYFALCGDHLQ AFYY A CGDHLQ	791
	Sbjct 671 YQSARRNDEKEKTIRSMETEMEKMVELALSESDTFRVVSITFLDVAK	AFYYSASCGDHLQ	730
	Query /92 THISKVLFQKV 802 THISKVLFQKV		
	Sbjct /31 THISKVLFQKV 741		

Blast vs global alignment

• Graphical overview of the Blast alignment

• Global alignment obtained using Needle

KSA_ARATH	501 ENDVWIGKTLYRMPYVNNNGYLELAKQDYNNCQAQHQLEWDIFQKWYEEN	550	
XP_002872809.	500 ENDVWIGKTLYRMPYVNNNGYLELAKQDYNNCQALHQLEWDTFQKWYEEN	549	
KSA_ARATH	551 RLSEWGVRRSELLECYYLAAATIFESERSHERMVWAKSSVLVKAISSSFG	600	
XP_002872809.	550 RLNEWGVRRSELLECYFLAAATIFESERSHERIVWAKSSVLVKAI-SSFG	598	
KSA_ARATH	601 ESSDSRRSFSDQFHEYIANARRSDHHFNDRNMRLDRPGSVQASRLAGVLI	650	
XP_002872809.	599 KSSDSRRSFSEQFHKYIANARRSDHHFNGRSMRLDRPGSVQASRLVGILI	648	End HSP1
KSA_ARATH	651 GTLNQMSFDLFMSHGRDVNNLLYLSWGDWMEXWKLYGDEGEGELMVKMII	700	with Blast
XP_002872809.	649 GTLNQMSFDLFMSHGRDVYNLLYQS	673	Start HSP2
KSA_ARATH	701 LMKNNDLTNFFTHTHFVRLAEIINRICLPROYLKARRNDEKEKTIKSMEK	750	with Blast
XP_002872809.	674ARRNDEKEKTIRSMET	689	
KSA_ARATH	751 EMGKMVELALSESDTFRDVSITFLDVAKAFYYFALCGDHLQTHISKVLFQ	800	
XP_002872809.	690 EMEKMVELALSESDTFRVVSITFLDVAKAFYYSASCGDHLQTHISKVLFQ	739	
KSA_ARATH	801 KV- 802		
XP_002872809.	740 KVL 742		

Blast vs global alignment

Sylvain Legrand Maître de Conférences UMR CNRS 8198 EVO-ECO-PALEO Evolution, Ecologie et Paléontologie Université de Lille - Faculté des Sciences et Technologies Bât SN2, bureau 208 - 59655 Villeneuve d'Ascq

sylvain.legrand@univ-lille.fr | http://eep.univ-lille.fr/ Tél. +33 (0)3 20 43 40 16