

Gene annotation

Adapted from the courses of the Bonsai team,

CRIStAL UMR 9189

Sylvain.legrand@univ-lille.fr

November 2022 – Sylvain Legrand

Introduction

Challenge

- The constant **decrease** in **sequencing costs** makes it increasingly easy to obtain the sequence of the genome of a species (and even hundreds of individuals of a species !)
- However, in many respects, genome annotation has become more difficult!

The NGS short reads (Illumina) do not allow to obtain the quality of assembly of the first genomes (Drosophila, human, Arabidopsis...) obtained using Sanger technology
 → But now 3rd generation long-read sequencing technologies

- Genome sequencing projects with **unusual characteristics** and without prior data

- Genome sequencing projects are now done "in house", by biologists who sometimes have **little bioinformatics skills**

Challenge

• Objective of the lesson: gene annotation

- background
- main methods
- application to bacteria
- application to eukaryotes

Going further: protein annotation

- context
- function prediction
- prediction of cellular localisation
- study of 2D and 3D structures

Figure 1 | The three layers of genome annotation: where, what and how?

Stein L. Genome annotation: from sequence to biology. Nat Rev Genet. 2001 Jul;2(7):493-503.

Gene annotation

Quality of assembly

- The first step is to **validate the assembly**
- Observe the **metrics** (N50, L50..)

	A. <u>halleri</u>	A. <u>halleri</u>	<u>A.lyrata</u>	A. thaliana
	<u>halleri</u>	<u>gemmifera</u>		
Nb scaffolds	3 152	2 239	695	7
Total length	174 Mb	196 Mb	207 Mb	120 Mb
Genome cov.	68.3 %	76.9 %	89.9 %	88.9 %
Longest scaff.	1.5 Mb	4.3 Mb	33.1 Mb	30.4 Mb
N50	279 389	712 249	24 464 547	23 459 830
L50	177	71	4	3

Box 1 | Common statistics for describing genome assemblies

Genome assemblies are composed of scaffolds and contigs. Contigs are contiguous consensus sequences that are derived from collections of overlapping reads. Scaffolds are ordered and orientated sets of contigs that are linked to one another by mate pairs of sequencing reads.

Legrand S et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA. 2019 Jul 17;10:30. Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.

Quality of assembly

Scaffold and contig N50s

By far the most widely used statistics for describing the quality of a genome assembly are its scaffold and contig N50s. A contig N50 is calculated by first ordering every contig by length from longest to shortest. Next, starting from the longest contig, the lengths of each contig are summed, until this running sum equals one-half of the total length of all contigs in the assembly. The contig N50 of the assembly is the length of the shortest contig in this list. The scaffold N50 is calculated in the same fashion but uses scaffolds rather than contigs. The longer the scaffold N50 is, the better the assembly is. However, it is important to keep in mind that a poor assembly that has forced unrelated reads and contigs into scaffolds can have an erroneously large N50.

Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.

Quality of assembly

BUSCO <u>http://busco.ezlab.org/</u>

• Search for universal single copy genes in the assembly

	A. <u>halleri</u> <u>halleri</u>	A. <u>halleri</u> gemmifera	<u>A.lyrata</u>	A. thaliana
Complete universal single-	95.3%	97.6%	98.5%	98.2%
Fragmented universal single-	1.5%	0.3%	0.3%	0.5%
Missing universal single-	3.2%	2.1%	1.2%	1.3%

BUSCIPV3 Assessing genome assembly and annotation completeness with Benchmarking Universal Single-Copy Orthologs

Legrand S et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA. 2019 Jul 17;10:30.

- **Eukaryotic** genomes can be **rich in repeated sequences**: 47% of the human genome, and only 1-2% of the genome is coding!
- At first sight, the **human genome** seems to be **a model of inefficiency**: genes spaced by large regions (10-100 kb), introns
- **In yeast**: 60% of the genome encodes the 6000 proteins. The 35,000 human genes are encoded by a genome 300 x larger

			109.61 kb		
Genes (Merged Ensembl/Havana)	STX3 >			OOSP3 >	SRD5A3P1 >
Genes (Merged Ensembl/Havana)	< MRPL16	< CBLIF	< TCN1		
	Reverse strand —		109.61 kb		
Gene Legend					
	Protein Coding		Non-Protein Coding		
	merged Ensembl/Havana Ensembl protein coding		pseudogene		

Screenshot from Ensembl.org Human genome 11:59,804,864-59,914,472

- **Dotplot** Chr1 *Arabidopsis thaliana* aligned against itself
- There are many repeats: most of them are transposable elements
- There are more repeats at the **centromere** in At

iversité

http://biolinx.bios.niu.edu/t80maj1/rice/arab_mega_dotplots.htm

10

http://biolinx.bios.niu.edu/t80maj1/rice/arab_mega_dotplots.htm

Université de Lille

- Repeated sequences interfere with genome assembly and gene prediction: ORFs of transposable elements are identified as genes of the host organism. They can also produce errors in the annotation of neighbouring genes
- Identification of repeated sequences and their masking are usually the first steps in annotating a (eukaryotic) genome
- **Masking**: replace these regions with "N" or lower case letters (softmasking)

Repeats are also a problem for genome assembly

From Michael Schatz 2014

- Two types of analyses: homology-based or de novo
- As transposable elements are **poorly conserved** between species, *de novo* analysis has the advantage of being able to identify specific families of elements
- Once a database of transposable elements has been obtained, the elements can be **identified** using tools such as RepeatMasker, Crossmatch... It is also possible to combine different tools
- In addition to transposable elements, the identified repeats can also include regions of **low complexity** and **repeated genes**: histones, tubulins...

Université de Lille

Gene annotation

Box 2 | Gene prediction versus gene annotation

Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.

Gene annotation

- **Starting point**: raw nucleic acid sequences
- Output
 - Start and end positions of genes
 - Transcription, splicing and translation signals
 - Idea of the function of proteins encoded by genes

• Limits

- Some genes are not predicted (false negatives)
- Some predicted genes are not true genes (false positives)
- Precise gene boundaries are sometimes wrong (wrong initiation codon choice...)

Main methods

Naive approach

- **Principle:** search for coding sequence signals
 - Start with an initiation codon ATG + other
 - End with a termination codon TAA, TAG or TGA
 - Have a size multiple of 3 (for genes without introns)
- Implementation: detect open reading frames
 - ORFs = Open Reading Frames
 - Frames that may contain a gene
 - >50 nt between an initiation codon and a termination codon

- Blind translation in the 6 reading frames (3 frames per DNA strand)

Naive approach

• The 6 reading frames of a nucleic sequence

Naive approach

Advantages

- *ab initio* method: without prior knowledge
- Reduces the amount of data to be analysed for sequence comparison

• Limits

- Not all ORFs are genes
- Sensitive to sequencing errors
- Not very useful for eukaryotic genes (presence of introns)

Statistical approach

- **Principle**: discriminate between coding and non-coding sequences
 - Based on code usage bias

• Implementation:

- Learning the code usage for a given organism from reliable coding sequences

- Calculation of the probability that a portion of a sequence is coding

- Analysis of transcription and translation signals to determine gene boundaries

Statistical approach

	aa	codons	% par aa	Nb
		GCA	0,65	11
Bias in the use of the	٨	GCC	0	0
genetic code	Alanine	GCG	0	0
 1 amino acid is encoded 		GCT	0,35	6
by N codons \rightarrow	E	TTC	0,21	7
synonymous codons Ph	nenylalanin	e TTT	0,79	27
New uniferme distribution of		GGA	0,50	11
• Non-Uniform distribution of codons used	G	GGC	0	0
	Glycine	GGG	0,05	1
	·	GGT	0,45	10

Exemple : gène cytB de *P. falciparum* G+C = 27.59 % du génome Statistical approach

- Advantages
 - *ab initio* approach: without prior annotation of genes
 - More reliable criteria than the naïve approach
- Limits
 - Need for a training dataset: confirmed coding sequences
 - Does not detect small genes/exons (below detection threshold)
 - CDS identification only, no indentification of UTRs
 - No identification of alternative splicing
- Some tools such as TwinScan, FGENESH, Augustus, Gnomon, GAZE and SNAP, can use evidence (mRNA, proteins) to improve evidence-driven predictions (compared to ab initio)

Comparative approach

• **Principle**: locate annotations from databases on the genome sequence

- Alignments with known proteins \rightarrow location of CDS, including introns

- Alignments with mRNAs (ESTs, cDNAs, etc.) \rightarrow location of CDSs + UTRs, including introns

Implementation

- Sequence comparison against libraries of mRNA or protein using Blast

- Alignment of matched mRNAs or proteins using a specialised software

Comparaison with mRNAs

• Comparison of the DNA sequence to nucleic acid databases using Blastn (or equivalent)

(- Detection of contaminating sequences (vectors...) Specialised blast: VecScreen)

- Detection of mRNAs potentially derived from the DNA sequence \rightarrow comparison with mRNAs obtained from the same species or from closely related species

- Alignment between the DNA sequence and the matched mRNAs using specialised software
 - Fine determination of 5' and 3' UTRs and exons
 - Software: EST2genome, Splign

Comparaison with mRNAs

Use of RNA-seq data

- This is the type of data that has the greatest potential to improve annotation
- Allows a better delimitation of exons, splice sites, and alternative splicing events
- But large amount of data, complex because often short Illumina reads
- 2 ways to use the reads

Genome-independent *de novo* assembly of reads (ABySS, SOAPdenovo, Trinity). The resulting transcripts are then aligned to the genome in the same way as seen for mRNA
Directly aligned to the genome (TopHat, GSNAP, Scripture), then the alignments are assembled using Cufflink

Comparison to proteins

 Comparison of the translated DNA sequence (in the 6 frames) to protein databases using BLASTX

- Detection of proteins potentially encoded by the sequence

- Alignment of matched proteins using specialised software
 - Determination of initiation codon and intron/exon junctions
 - Software: GeneWise

Comparative approach

Advantages

- Validates potential genes by comparison with experimental data (mRNA, proteins)

- Provides clues to protein function

• Limits

Requires a priori knowledge
 Does not find orphan sequences
 Difficult with isolated genomes from a taxonomic point of view

- Propagates errors in libraries

Structure of prokaryotic genes

Over 80% of the genome is coding

- Short intergenic sequences
- On average: one gene per 1,000 nucleotides (kb)

• Simple gene structure

- Short transcribed but untranslated regions (3' and 5' UTR)
- No intron (with some exceptions)

Structure of prokaryotic genes

Structure of prokaryotic genes

 Here is an extract from the genome sequence of Pseudoalteromonas sp.

>AB057417

Proposed workflow

- Analyse in 4 steps
- 1. ORF identification – ORFFinder
- 2. ORF validation
 - SmartBlast (GeneWise if needed)
- 3. Statistical prediction of CDS – GeneMark, GLIMMER
- 4. Statistical prediction of regulatory signals– BPROM

ORFfinder

Open Reading Frame Finder

Université de Lille

ORF finder searches for open reading frames (ORFs) in the DNA sequence you enter. The program returns the range of each ORF, along with its protein translation. Use ORF finder to search newly sequenced DNA for potential protein encoding segments, verify predicted protein using newly developed SMART BLAST or regular BLASTP.

This web version of the ORF finder is limited to the subrange of the query sequence up to 50 kb long. Stand-alone version, which doesn't have query sequence length limitation, is available for Linux x64.

Examples (click to set values, then click Submit button) :

- NC_011604 Salmonella enterica plasmid pWES-1; genetic code: 11; 'ATG' and alternative initiation codons; minimal ORF length: 300 nt
- NM_000059; genetic code: 1; start codon: 'ATG only'; minimal ORF length: 150 nt

Enter Query Sequence
Enter accession number, gi, or nucleotide sequence in FASTA format:
9 From: To:
Choose Search Parameters
Inimal ORF length (nt): 75 ♦
Genetic code: 1. Standard
ORF start codon to use:
• *ATG" only
"ATG" and alternative initiation codons
Any sense codon
Ignore nested ORFs: □
Start Search / Clear
Submit Clear

https://www.ncbi.nlm.nih.gov/orffinder/

ORFfinder results

Open Reading Frame Viewer

AB057417

(https://ncbiinsights.ncbi.nlm.nih.gov/2015/07/29/smartblast/)

SmartBlast

- SmartBlast compares the ORF against database (« landmark database ») consisting of the proteomes of 27 species spread over a large phylogeny. Also compares against the nr database https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi?CMD= Web&PAGE_TYPE=BlastDocs#searchSets
- It returns the 5 best results obtained against the « landmark database »
- He then returns the results obtained against the « nr » database

* Shewanella oneidensis MR-1 * Escherichia coli str. K-12 substr. MG1655 Fonction 10 kDa chaperonin GroES Cpn10 chaperonin GroES, small subunit of GroESL		
---	--	--

Descriptions

Best hits Select: All None Selected:0	5 best results against « landmark » databas	e						
Alignments GenPept		0						
	Description	Max Total Query E score score cover value Ident Accession						
10 kDa chaperonin GroES [Shewanella oneidensis	MR-1]	130 130 82% 1e-39 72% NP 716336.1						
Cpn10 chaperonin GroES, small subunit of GroESL	Cpn10 chaperonin GroES, small subunit of GroESL [Escherichia coli str. K-12 substr. MG1855]							
co-chaperonin GroES [Pseudomonas aeruginosa PA	119 119 81% 6e-35 62% NP 253076.1							
co-chaperonin GroES [Neisseria meningitidis MC58]	111 111 81% 7e-32 59% NP 274967.1							
chaperonin GroES [Clostridioides difficile 630]	86.3 86.3 81% 4e-22 46% YP 001086663.1							
Additional BLAST Hits Select: All None Selected:0	Results against « nr » database							
Alignments GenPept		0						
	Description	Max Total Query E score score cover value Ident Accession						
MULTISPECIES: co-chaperone GroES [Pseudoaltero	omonas	186 186 82% 3e-65 100% WP 006791252.1						
MULTISPECIES: co-chaperone GroES [Pseudoaltero	omonas	184 184 82% 8e-65 98% WP 004587676.1						
co-chaperone GroES [Pseudoalteromonas sp. TMED]	043]	184 184 82% 2e-64 98% OUX91642.1						

• Best hit against « landmark » database

Université de Lille

	nments	
	<u>GenPept</u> ▼ Next	Previous Descriptions
pas début O	10 kDa chaperonin GroES [Shewanella oneidensis MR-1] Sequence ID: NP_716336.1 Range 1: 1 to 96 GenPept Vervious Match Score Expect Method Identities Positives Gaps Frame 130 bits(327) 1e-39() Compositional matrix adjust 69/96(72%) 79/96(82%) 1/96(1%) Query 21 MNIRPLQDRVIVKRLEEETKSAGGIVLTGSAAEKSTRGEVVAVGNGRILDNGDVRALEVK 80 MNIRPL DRVIVKRLE E+ SAGGIVLTGSAAEKSTRGEVVAVGNGRILLING VR L+VK MNIRPLHDRVIVKRLEVESTSAGGIVLTGSAAEKSTRGEVLAVGNGRILLING VR L+VK MNIRPLHDRVIVKRLEVESTSAGGIVLTGSAAEKSTRGEVLAVGNGRILLING VR L+VK MNIRPLHDRVIVKRLEVESTSAGGIVLTGSAAEKSTRGEVLAVGNGRILENGTVRPLDVK 60 Query 81 AGDTVLFG-SYVEKTEKIEGQEYLIMREDNILGIVG 115 GD V+F Y K EKI+60E LI+ E ++++ IVG 96 FF, 61 VGDVVIFNEGYGVKKEKIDGQEVLILSEADLMAIVG 96	Related Information Gene - associated gene details Identical Proteins - Identical proteins to WP_011071021.1
mais debut p	<u>Gen≓épt</u> ▼ Next	A Previous A Descriptions
	Cpn10 chaperonin GroES, small subunit of GroESL [Escherichia coli str. K-12 substr. MG1655] Sequence ID: NP_418566.1 Range 1: 1 to 95 GenPept Vext Match Previous Match Score Expect Method Identities Positives Gaps Frame 127 bits(320) 2e-38() Compositional matrix adjust. 68/95(72%) 78/95(82%) 1/95(1%) Query 21 MNIRPLODRVIVKRLEEETKSAGGIVLTGSAAEKSTRGEVVAVGNGRILLNGDVRALEVK 80 MNIRPL DRVIVKR E ETKSAGGIVLTGSAAEKSTRGEVLAVGNGRILLNGEVKPLDVK 60 Query 81 AGDTVLFGS-YVEKTEKIEGQEYLIMREDNILGIV 114 GD V+F Y K+EKI+ +E LIM E +IL IV Sbjct 61 VGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIV 95	Related Information Gene - associated gene details Identical Proteins - Identical proteins to WP_001026276.1

Best hit against « nr » database

CTG

100

TTR GGA GAR

RCT

GCT

ттт TIC TGT GTT CAG ARA

Additional BLAST Hits

ATG

CRA RŢT

Université ille

110

CTR

AAC ATG

120

ABA

ATT CGT CCT

130

RAC

CAA

140

GAT

CGC GTA

150

ATC

- **ORF : 65..412** on the strand + of the DNA sequence
 - Codes a 115 aa protein + stop codon
- Alignments provided by SmartBLAST

- Query 21..115 : only a part of the ORF protein So the **ORF is not fully coding** The alignement starts at 21 => the CDS starts at

65+(21-1)*3 = 125

End of the CDS at 412

- Sbjct 1..95 : The protein from the database is complete **The predicted coding sequence is complete**

• The alignments obtained with different sequences are good

- Prediction is **reliable**, no need for GeneWise

GeneMark

GeneMark

A family of gene prediction programs developed at **Georgia Institute of Technology**, Atlanta, Georgia, USA.

Gene Prediction in Bacteria, Archaea, Metagenomes and Metatranscriptomes

Novel genomic sequences can be analyzed either by the self-training program **GeneMarkS** (sequences longer than 50 kb) or by **GeneMark.hmm with Heuristic models**. For many species pre-trained model parameters are ready and available through the **GeneMark.hmm** page. Metagenomic sequences can be analyzed by **MetaGeneMark**, the program optimized for speed.

Gene Prediction in Eukaryotes

Novel genomes can be analyzed by the program **GeneMark-ES** utilizing unsupervised training. Note that GeneMark-ES has a special mode for analyzing fungal genomes. Recently, we have developed a semi-supervised version of GeneMark-ES, called GeneMark-ET that uses RNA-Seq reads to improve training. For several species pre-trained model parameters are ready and available through the **GeneMark.hmm** page.

Gene Prediction in Transcripts

Sets of assembled eukaryotic transcripts can be analyzed by the modified **GeneMarkS** algorithm (the set should be large enough to permit self-training). A single transcript can be analyzed by a special version of **GeneMark.hmm with Heuristic models**. A new advanced algorithm GeneMarkS-T was developed recently (manuscript sent to publisher); The GeneMarkS-T software (beta version) is available for download.

Gene Prediction in Viruses, Phages and Plasmids

Sequences of viruses, phages or plasmids can be analyzed either by the **GeneMark.hmm with Heuristic models** (if the sequence is shorter than 50 kb) or by the self-training program **GeneMarkS**.

http://exon.gatech.edu/GeneMark/

GeneMark results

- GeneMark.hmm with Heuristic models
- Same result as ORFfinder; in contradiction with the start identified by SmartBlast

```
GeneMark.hmm PROKARYOTIC (Version 3.26)
Date: Tue Jan 2 06:16:26 2018
Sequence file name: seq.fna
Model file name: GeneMark hmm heuristic.mod
RBS: false
Model information: Heuristic model for genetic code 11 and GC 36
FASTA definition line: AB057417
Predicted genes
                     LeftEnd
                                RightEnd
                                                         Class
   Gene
           Strand
                                                Gene
    #
                                               Length
                        65
                                                 348
    1
             +
                                    412
                                                            1
```


GeneMark results

- **GeneMark.hmm** model adapted for *Pseudoalteromonas sp.*
- Result in agreement with SmartBlast

125

Best results with a model defined for the studied species

412

```
GeneMark.hmm PROKARYOTIC (Version 3.26)
Date: Tue Jan 2 06:25:38 2018
Sequence file name: seq.fna
Model file name: /home/genemark/parameters/prokaryotic/Pseudoalteromonas atlantica T6c/
RBS: true
Model information: Pseudoalteromonas_atlantica_T6c
FASTA definition line: AB057417
Predicted genes
          Strand LeftEnd
                                RightEnd
                                                        Class
  Gene
                                               Gene
   #
```

1

+

Length

288

1

Bprom

BPROM

Used in more than 800 publications.

Reference: V. Solovyev, A Salamov (2011) Automatic Annotation of Microbial Genomes and Metagenomic Sequences. In Metagenomics and its Applications in Agriculture, Biomedicine and Environmental Studies (Ed. R.W. Li), Nova Science Publishers, p. 61-78

BPROM - Prediction of bacterial promoters

BPROM is bacterial sigma70 promoter recognition program with about 80% accuracy and specificity. It is best used in regions immediately upstream from ORF start for improved gene and operon prediction in bacteria.

Paste nucleotide sequence here (plain or in fasta format):

>AB057417	
aacgaaaagattaaaaatttatcattttttctcttggaattttttactctacccccatta	
atgaatgcaaattagaaaagcttttttctgtactgttcagaaactgttaggagaactaaa	

Alternatively, load a local file with sequence:

Local file name: Choisissez un fichier Aucun fichier choisi

Process Reset

[Help] [Example]

Return to page with other programs of group: Operon and gene finding in bacteria

http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb

Bprom results

Number of predicted promoters - 2	
Promoter Pos: 418 LDF- 4.85	
-10 box at pos. 402 ttgtagget Score 44	
-35 box at pos. 381 gtgaag Score 21	
Promoter Pos: 80 LDF- 2.31	
-10 box at pos. (65) atgcaaatt Score 29 proche des vraies positi	ons
-35 box at pos. 43 tttact Score 42 cf. page suivante	
Oligonucleotides from known TF binding sites:	
For promoter at 418:	
fnr: TCAAGAGT at position 361 Score - 13	
purR: TTTTCGTT at position 419 Score - 5	
purR: TTTCGTTT at position 420 Score - 6	
rpoD15: TTAACACA at position 426 Score - 12	
crp: ACACACAT at position 429 Score - 12	
glpR: CACACATT at position 430 Score - 6	
For promoter at 80:	
soxS: TATCATTT at position 20 Score - 9	
fur: ATCATTTT at position 21 Score - 8	

Université de Lille

Summary of the analysis

- The methods lead to the **same conclusion**: the sequence contains a single CDS 125...412 (including the termination codon)
- Additional information given by SmartBLAST: the CDS encodes a chaperone of the type Cpn10 / GroES
- Glimmer (statistical prediction) finds no CDS

Prediction in bacteria: some pitfalls

- **Several initiation codons** (AUG) on the sequence: Which is the right one?
- Possibility of alternative initiation codons (GUG, UUG) Confirmation by:
 - Presence of RBS (Ribosome Binding Site)
 - Comparative analysis with other species
 - Statistical prediction
- **Incomplete genes** (early stop codon, phase shift)
 - Real (corrected during translation, pseudogenes)
 - Sequencing errors
 - Detection by: BlastX reports inconsistencies (different frames); comparison + prediction
- Overlapping genes
 - Common in viruses, sometimes in bacteria (gene ends)

Alternative pipeline

Richardson EJ, Watson M. The automatic annotation of bacterial genomes. Brief Bioinform. 2013 Jan;14(1):1-12.

Université de Lille

Eukaryotic gene structure

- Low proportion of protein coding sequences in genomes
 About 2% of the human genome
- Presence of a very large number of **repeated sequences**
 - \sim 50% of the human genome
- Complex gene structure
 - Long 3' and 5' untranslated regions (non-coding exons)
 - Presence of introns, alternative splicing

Eukaryotic gene structure

Intron consequences

• Exon size not a multiple of 3

- Codons cut by an intron
- Frame shift from one exon to another
- No strand change
- Existence of short exons (~ 10 nt)

- Above the resolution limits of software

- Existence of very long introns (> exons)
 - Difficulty in locating exons
- Alternative splicing
 - Concerns > 50% of human genes

Université de Lille Example: study of an mRNA

- 905 bp mRNA from a human cell
- Three steps analysis

 Search for CDS in mRNA BlastX + GeneWise
 - 2. Localization of the gene corresponding to the mRNA Blast "Genomes" + Est2genomes or Splign
 - 3. Testing of statistical methods on the genome sequence FGENESH, AUGUSTUS, GeneScan

Blastx results, graphic

Blastx results, alignments

Blastx results report

Study of the alignment with the 2nd protein (1st is not relevant)

• BATF_HUMAN

Human protein, 100% identity => protein of interest

- Frame = +2: Coding sequence is on the + strand
- Query 341..616 / Sbjct 34..125
 - Need a specialised software to align this protein to the mRNA
- ATF-like basic leucine zipper transcriptional factor
 May be a bZIP-type transcription factor

Pairwise Sequence Alignment

GeneWise compares a protein sequence to a genomic DNA sequence, allowing for introns and frameshifting errors.

STEP 1 - Enter your sequences

Enter or paste your protein sequence in any supported format:

Or, upload a file: Choisissez un fichier Aucun fichier choisi

AND

Enter or paste your DNA sequence in any supported format:

https://www.ebi.ac.uk/Tools/psa/genewise/

Wise results

BATF_HUMAN		1 MPHSSDSSDSSFSRSPPPGKQDSSDDVRRVQRREKNRIAAQKSRQRQTQ - protéine d'intérêt MPHSSDSSDSSFSRSPPPGKQDSSDDVRRVQRREKNRIAAQKSRQRQTQ MPHSSDSSDSSFSRSPPPGKQDSSDDVRRVQRBEKNRIAAQKSRQRQTQ
ARNm_hsp	2	accatgaagtatactcccgacgttgggaagcaagaacaggcaaccacac
		gtccccctcccccttctcagcatttgaatgggggatttccggcagggag
BATF_HUMAN		50 KADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHEPLCSVLAA KADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHEPLCSVLAA KADTLHLESEDLEKONAALBKEIKOLTEELKYFTSVLNSHEPLCSVLAA
ARNm_hsp		390 aggacccgaggcgacaggccaggaccaggcattatgcaacgccttgcgg
		acactatagaataaaacetgaataatcaataateettagaaetgettee geeegeggeaeggagegtaeggeggeagaggeeeggggeeegegggee
BATF_HUMAN		99 STPSPPEVVYSAHAFHQPHVSSPRFQP
		STPSPPEVVYSAHAFHQPHVSSPRFQP STPSPPEVVYSAHAFHQPHVSSPRFQP
ARNm_hsp	!	37 aacteegggtagegteecegateetee
		egegeegggeeceaceatteeegeege
FT	CDS	243617

 début et fin de la CDS sans le codon de terminaison

Wise results report

• Comparison with the protein of interest (BATF_HUMAN)

- BlastX does not align the whole protein with the mRNA because the beginning of the protein contains an low complexity region that has been masked by BlastX

GeneWise gives a CDS at position 243..617+3 on the mRNA
 The protein is fully aligned with the mRNA

Blastn result against the genome

Graphic Summary

Blastn result against the genome, alignments

Bownload v Ge	nBank Graphic	Sort by: Query s	start position V			Next 🔺 Previous 🛣 Descriptions
Homo sapiens c	hromosome 1	4 GRCh38.p7 Prim	ary Assembly			
Sequence ID: NC_00	00014.9 Length	: 10/043/18 Number o	of Matches: 3			Related Information
Range 1: 75522441	0 75522746 G	enBank Graphics Identities	▼ Next	Match A Prev	ious Match	PubChem BioAssay -
566 bits(306)	4e-158	306/306(100%)	0/306(0%)	Plus/Plus		bioactivity screening
Features: basic leu	cine zipper transc	riptional factor ATF-like				context
Query 1 Sbjct 75522441	CAagagagaga CAAGAGAGAGAGA	gagagCGTGCAAGCCCCAA 	AGCGAGCGACATGTCCCTTT	GGGGAGCAGT	60 75522500	
Query 301	AACAGG 306					Gène sur chr14, brin +
Sbjct 75522741	AACAGG 7552	22746				3 régions s'alignent => 3 exons ?
Range 2: 75525081	to 75525189 Ge	enBank Graphics	▼ Next Match ▲ Previo	ous Match 🛕 F	irst Match	Débutfin : 7552244175546989
Score	Expect	Identities	Gaps	Strand		Taille : 24550 nt
Features: basic leuc	ine zipper transcr	iptional factor ATF-like	0,105(070)	riusyrius		=> région à aligner avec l'ARNm : chr14+ 7552240075547000
Query 303 Sbjct 75525081	CAGGACTCATC	GATGATGTGAGAAGAGTT GATGATGTGAGAAGAGAGTT GATGATGTGAGAAGAGAGT	CAGAGGAGGGAGAAAAATCG 	TATTGCCGCC	362 75525140	
Query 363 Sbjct 75525141	CAGAAGAGCCG/	ACAGAGGCAGACACAGAAG 	GCCGACACCCTGCACCTGG	411 75525189		
Range 3: 75546461	to 75546989 Ge	nBank Graphics	Vext Match A Previo	ous Match 🛕 F	irst Match	
Score 977 bits(529)	Expect 0.0	Identities 529/529(100%)	Gaps 0/529(0%)	Strand Plus/Plus		
Features: basic leuc	ine zipper transcr	iptional factor ATF-like				
Query 410 Sbjct 75546461	GGAGAGCGAAG/	ACCTGGAGAAACAGAACGC	GGCTCTACGCAAGGAGATCA GGCTCTACGCAAGGAGATCA	AGCAGCTCAC	469 75546520	
Query 890 Sbjct 75546941	AGCAAGGCGGGG	AGGGAACGGTTATTTTC	ГАААТАААТGCTTTAAAAG ГАААТАААТGCTTTAAAAG	938 75546989		

Université de Lille

EST2genome

est2genome

Align EST sequences to genomic DNA sequence (read the manual)

Unshaded fields are optional and can safely be ignored. (hide optional fields)

Input section
Input section
Spliced EST nucleotide sequence(s). Use one of the following three fields:
1. To access a sequence from a database, enter the USA here:
2. To upload a sequence from your local computer, select it here: Choisissez un fichier Aucun fichier choisi
3. To enter the sequence data manually, type here:
Unspliced genomic nucleotide sequence. Use one of the following three fields:
1. To access a sequence from a database, enter the USA here:
2. To upload a sequence from your local computer, select it here: Cheisiasar up fichier, Augun fichier sheisi
z. To upload a sequence from your local computer, select it field. Choisissez on tenier Adduntiener choisi
3. To enter the sequence data manually, type here:

http://www.bioinformatics.nl/cgi-bin/emboss/est2genome

EST2genome results

 Determination of the position of exons on chr 14, region 75522400..75547000

			and the second				
305	100.0	42	346	NC_000014	1	305	ARNm_hsp
-20	0.0	347	2684	NC 000014			
105	100.0	2685	2789	>NC_000014	306	410	ARNm hsp
-20	0.0	2790	24062	NC 000014			_
528	100.0	24063	24590	NC 000014	(11)	938	ARNm hsp
				_			_
898	100.0	42	24590	NC 000014	1	938	ARNm hsp
305	100.0	42	346	NC_000014	1	305	ARNm_hsp
105	100.0	2685	2789	NC 000014	306	410	ARNm hsp
528	100.0	24063	24590	NC_000014	411	938	ARNm_hsp
	305 -20 105 -20 528 898 305 105 528	305 100.0 -20 0.0 105 100.0 -20 0.0 528 100.0 898 100.0 305 100.0 105 100.0 528 100.0	305 100.0 42 -20 0.0 347 105 100.0 2685 -20 0.0 2790 528 100.0 24063 898 100.0 42 305 100.0 42 105 100.0 2685 528 100.0 2685 528 100.0 2685	305 100.0 42 346 -20 0.0 347 2684 105 100.0 2685 2789 -20 0.0 2790 24062 528 100.0 24063 24590 898 100.0 42 346 105 100.0 2685 2789 528 100.0 42 346 105 100.0 2685 2789 528 100.0 2685 2789 528 100.0 2685 2789 528 100.0 24063 24590	305 100.0 42 346 NC_000014 -20 0.0 347 2684 NC_000014 105 100.0 2685 2789 NC_000014 -20 0.0 2790 24062 NC_000014 -20 0.0 2790 24062 NC_000014 528 100.0 24063 24590 NC_000014 898 100.0 42 346 NC_000014 305 100.0 42 346 NC_000014 105 100.0 2685 2789 NC_000014 305 100.0 2685 2789 NC_000014 105 100.0 2685 2789 NC_000014 528 100.0 24063 24590 NC_000014	305 100.0 42 346 NC_000014 1 -20 0.0 347 2684 NC_000014 106 105 100.0 2685 2789 NC_000014 106 -20 0.0 2790 24062 NC_000014 106 -20 0.0 2790 24062 NC_000014 11 528 100.0 24063 24590 NC_000014 11 898 100.0 42 24590 NC_000014 1 305 100.0 42 346 NC_000014 1 305 100.0 2685 2789 NC_000014 1 105 100.0 2685 2789 NC_000014 306 528 100.0 24063 24590 NC_000014 411	305 100.0 42 346 NC_000014 1 305 -20 0.0 347 2684 NC_000014 106 410 105 100.0 2685 2789 NC_000014 106 410 -20 0.0 2790 24062 NC_000014 11 938 898 100.0 42 24590 NC_000014 1 938 305 100.0 42 346 NC_000014 1 938 305 100.0 42 346 NC_000014 1 305 105 100.0 2685 2789 NC_000014 1 306 410 528 100.0 2685 2789 NC_000014 306 410 528 100.0 24063 24590 NC_000014 411 938

- So exon 1 start: 75522400+42-1
- CDS location on chromosome 14 region: join(284..346,2685..2789,24063..24272)

Splign results

S	N	CBI	5	ipli	gn i				ī					
HOME	SEARCH	SITE MAR		Overview		Online		Dow	nload		Docur	nentation		Contacts
#	Quer	ry.	Subje	ct	Spa	n(bp)	Cove	rage(%)	Overall(%)	Exon(%)	CDS(%)	In-frame(%)		
1 AI	RNm_h	sp(+)	56881558	84(+) 7	5522441	-7554698	9 10	00.00	100.00	100.00	0.00	0.00		
														Graphics Text
Mod	el 1	00	Overage 1 Overall 1 Exon 1	00.00% 00.00% 00.00%	CD In- Pri	frame mary trans	0.0 0.0 cript 93	00% 00% 8 bp	Misma Exons Intron	tches and i (min/max/ s (min/max	indels /ave), bp k/ave), bp	0 105 / 528 / 31 2339 / 21274	/ 11806	
ARNm	n_hsp (+	+)	•					•				938		
56881	5584 (4	+) Homo	o sapiens c	hromosor	me 14, GR	Ch38.p7 P	rimary A	ssembly						
75522	441										75546	989		
Segm	ents A	lignme	ent											
1 2 3		75521	306	D GA	S CTCAT	S D CTGATG 	D V ATGT	R GAGAA	R V Q GAGTTCA	R R GAGGAG	E GGAGA	K N R AAAATCGT IIIIIIII	I A ATTGC	A Q K S CGCCCAGAAGAG
		7552	371 CC 5149 CC	R Q GACAG	R Q AGGCA IIIII AGGCA	T Q GACACA GACACA	K GAAG IIII GAAG	A D GCCGA IIIII GCCGA		H L CACCTO	GTAAG			COCCENTIANONO

Université de Lille

Fgenesh results

CDSf = CDS first (commence par un codon d'initiation) CDSi = CDS internal (ni codon d'initiation, ni codon de terminaison) CDSI = CDS last conding segment (se termine par un codon de terminaison) PoIA = signal pour la queue polyA

Augustus results

NC_000014	AUGUSTUS	gene	284	24272	0.89	+	·	Gene	g1
NC_000014	AUGUSTUS	mRNA	284	24272	0.89	+	•	mRNA	gl.tl
NC_000014	AUGUSTUS	start_codor	n 284	286		+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	initial	284	346	1	+	0	mRNA	gl.t1
NC_000014	AUGUSTUS	internal	2685	2789	0.99	+	0	mRNA	g1.t1
NC_000014	AUGUSTUS	terminal	24063	24272	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	CDS	284	346	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	CDS	2685	2789	0.99	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	CDS	24063	24272	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	stop_codon	24270	24272		+	0	mRNA	gl.tl

• **3 exons**: identical to results obtained by sequence comparison approach

- Only coding regions (the term mRNA is abused)

GenScan results

Gn.Ex	Туре	S	Begin	End	Len	Fr	Ph	I/Ac	Do/T	CodRg	P	Tscr
		-										
1.01	Init	+	284	346	63	1	0	83	80	45	0.914	4.35
1.02	Intr	+	2685	2789	105	2	0	114	119	114	0.996	17.51
1.03	Term	+	24063	24272	210	2	0	83	49	404	0.985	33.29
1.04	PlyA	+	24574	24579	6							1.05

- **3 exons**: identical to results obtained by sequence comparison approach
 - Only coding parts
- **PolyA tail** predicted at the same location as FGENESH

Summary of the analysis

- All predictions agree on **3 exons**
- **One additional coding exon** predicted by FGENESH Alternative splicing ?
- The encoded protein is probably a **B-zip transcription factor**

Automatic annotation of a whole genome

- Use an annotation pipeline: Maker, PASA, Gnomon ...
- Example: Maker

Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sánchez Alvarado A, Yandell M. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008 Jan;18(1):188-96.

Campbell MS, Holt C, Moore B, Yandell M. Genome Annotation and Curation Using MAKER and MAKER-P. Curr Protoc Bioinformatics. 2014 Dec 12;48:4.11.1-39.

Viewing annotation data

 Five commonly used formats for annotations: GFF3, GenBank, BED, GTF and EMBL

GFF3→ https://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md

 Use of a genome visualisation tool (IGV, Jbrows, GenomeView...)

Sequence in bp

Exemple de visualisation par GenomeView

Viewing annotation data

Homo sapiens chromosome 14, GRCh38.p7 Primary Assembly

NCBI Reference Sequence: NC_000014.9

GenBank Graphics

>NC_000014.9:75522400-75547000 Homo sapiens chromosome 14, GRCh38.p7 Primary Assembly

Sequence in FASTA forma

NC_000014	AUGUSTUS	gene	284	24272	0.89	+	•	Gene	g1
NC_000014	AUGUSTUS	mRNA	284	24272	0.89	+	•	mRNA	gl.tl
NC_000014	AUGUSTUS	start_codor	n 284	286		+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	initial	284	346	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	internal	2685	2789	0.99	+	0	mRNA	g1.t1
NC_000014	AUGUSTUS	terminal	24063	24272	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	CDS	284	346	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	CDS	2685	2789	0.99	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	CDS	24063	24272	1	+	0	mRNA	gl.tl
NC_000014	AUGUSTUS	stop_codon	24270	24272		+	0	mRNA	gl.tl

Gene prediction by AUGUSTUS in GFF3 format

Université de Lille

Visualising annotation data in GenomeView

	< + →	Chromosome:	NC_000014.9:75522400-75547000										
1	2001	4001	JE001	8001	10001	12001 24.6 Kb	14001	16001	18001	20001	22001	240	
	2001	4001	6001	8001	10001	12001	14001	16001	18001	20001	22001	2400	
1 2	2001	4001	6001	8001	10001	12001	14001	16001	18001	20001	22001	2400	
Start_codor initial stop_codor internal	n n											Þ	
transcript terminal													
Diffe track	erent	start_co initial stop_co internal gene transcri cDS	don don pt	gi gi.ti									

Université de Lille
References

• Annotation of **prokaryotic** genomes

- Richardson EJ, Watson M. The automatic annotation of bacterial genomes. Brief Bioinform. 2013 Jan;14(1):1-12.

• Annotation of **eukaryotic** genomes

- Stein L. Genome annotation: from sequence to biology. Nat Rev Genet. 2001 Jul;2(7):493-503.

- Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.

- Mudge JM, Harrow J. The state of play in higher eukaryote gene annotation. Nat Rev Genet. 2016 Dec;17(12):758-772.

Sylvain Legrand Maître de Conférences UMR CNRS 8198 EVO-ECO-PALEO Evolution, Ecologie et Paléontologie Université de Lille – Faculté des Sciences et Technologies Bât SN2, bureau 208 - 59655 Villeneuve d'Ascq

sylvain.legrand@univ-lille.fr | www.univ-lille.fr Tél. +33 (0)3 20 43 40 16