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• The constant decrease in sequencing costs makes it
increasingly easy to obtain the sequence of the genome of a 
species (and even hundreds of individuals of a species !)

• However, in many respects, genome annotation has become
more difficult!

- The NGS short reads (Illumina) do not allow to obtain the 
quality of assembly of the first genomes (Drosophila, 
human, Arabidopsis...) obtained using Sanger technology
à But now 3rd generation long-read sequencing
technologies

- Genome sequencing projects with unusual
characteristics and without prior data

- Genome sequencing projects are now done "in house", by 
biologists who sometimes have little bioinformatics skills

Challenge
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Stein L. Genome annotation: from sequence to biology. Nat Rev Genet. 2001 Jul;2(7):493-503.

• Objective of the lesson: gene
annotation 

- background
- main methods
- application to bacteria
- application to eukaryotes

• Going further: protein annotation
- context
- function prediction
- prediction of cellular 
localisation
- study of 2D and 3D structures

Challenge



Gene annotation
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Quality of assembly

• The first step is to validate the assembly

• Observe the metrics (N50, L50..)

Legrand S et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA. 2019 Jul 17;10:30.
Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.
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Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.

Quality of assembly
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• BUSCO http://busco.ezlab.org/

• Search for universal single copy genes in the assembly

Quality of assembly

Legrand S et al. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA. 2019 Jul 17;10:30.

http://busco.ezlab.org/
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Identification of repeated sequences

• Eukaryotic genomes can be rich in repeated sequences: 47% 
of the human genome, and only 1-2% of the genome is coding!

• At first sight, the human genome seems to be a model of 
inefficiency: genes spaced by large regions (10-100 kb), introns

• In yeast: 60% of the genome encodes the 6000 proteins. The 
35,000 human genes are encoded by a genome 300 x larger

Screenshot from Ensembl.org Human genome 11:59,804,864-59,914,472
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• Dotplot Chr1 Arabidopsis thaliana aligned against itself

• There are many repeats: most of them are transposable 
elements

• There are more repeats at the centromere in At

Identification of repeated sequences

http://biolinx.bios.niu.edu/t80maj1/rice/arab_mega_dotplots.htm
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http://biolinx.bios.niu.edu/t80maj1/rice/arab_mega_dotplots.htm

Identification of repeated sequences
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• Repeated sequences interfere with genome assembly and 
gene prediction: ORFs of transposable elements are identified as 
genes of the host organism. They can also produce errors in the 
annotation of neighbouring genes

• Identification of repeated sequences and their masking are 
usually the first steps in annotating a (eukaryotic) genome

• Masking: replace these regions with "N" or lower case letters
(softmasking)

Identification of repeated sequences
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From Michael Schatz 2014
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Repeats are also a problem for genome assembly
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• Two types of analyses: homology-based or de novo

• As transposable elements are poorly conserved between species, 
de novo analysis has the advantage of being able to identify
specific families of elements

• Once a database of transposable elements has been obtained, the 
elements can be identified using tools such as RepeatMasker, 
Crossmatch... It is also possible to combine different tools

• In addition to transposable elements, the identified repeats can
also include regions of low complexity and repeated genes: 
histones, tubulins...

Identification of repeated sequences
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The REPET 
package 
(URGI)

Flutre T. et al, 
2011

Identification of repeated sequences
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Gene annotation

Yandell M, Ence D. A beginner's guide to eukaryotic genome annotation. Nat Rev Genet. 2012 Apr 18;13(5):329-42.
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Gene annotation

• Starting point: raw nucleic acid sequences

• Output
- Start and end positions of genes
- Transcription, splicing and translation signals
- Idea of the function of proteins encoded by genes

• Limits
- Some genes are not predicted (false negatives)
- Some predicted genes are not true genes (false positives)
- Precise gene boundaries are sometimes wrong (wrong
initiation codon choice...)



1818

Main methods
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• Principle: search for coding sequence signals
- Start with an initiation codon ATG + other
- End with a termination codon TAA, TAG or TGA
- Have a size multiple of 3 (for genes without introns) 

• Implementation: detect open reading frames
- ORFs = Open Reading Frames 
- Frames that may contain a gene
- >50 nt between an initiation codon and a termination
codon
- Blind translation in the 6 reading frames (3 frames per 
DNA strand)

Naive approach
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• The 6 reading frames of a nucleic sequence

Naive approach
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• Advantages
- ab initio method: without prior knowledge
- Reduces the amount of data to be analysed for 
sequence comparison

• Limits
- Not all ORFs are genes
- Sensitive to sequencing errors
- Not very useful for eukaryotic genes (presence of introns)

Naive approach
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• Principle: discriminate between coding and non-coding sequences
- Based on code usage bias

• Implementation: 
- Learning the code usage for a given organism from reliable
coding sequences
- Calculation of the probability that a portion of a sequence is
coding
- Analysis of transcription and translation signals to determine
gene boundaries

Statistical approach
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Bias in the use of the 
genetic code 

• 1 amino acid is encoded
by N codons à
synonymous codons

• Non-uniform distribution of 
codons used

Statistical approach

Alanine

Phenylalanine

Glycine
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• Advantages
- ab initio approach: without prior annotation of genes
- More reliable criteria than the naïve approach

• Limits
- Need for a training dataset: confirmed coding sequences
- Does not detect small genes/exons (below detection
threshold) 
- CDS identification only, no indentification of UTRs
- No identification of alternative splicing

• Some tools such as TwinScan, FGENESH, Augustus, Gnomon, 
GAZE and SNAP, can use evidence (mRNA, proteins) to improve
evidence-driven predictions (compared to ab initio)

Statistical approach
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• Principle: locate annotations from databases on the genome
sequence

- Alignments with known proteins à location of CDS, 
including introns 
- Alignments with mRNAs (ESTs, cDNAs, etc.)à location 
of CDSs + UTRs, including introns 

• Implementation
- Sequence comparison against libraries of mRNA or protein
using Blast
- Alignment of matched mRNAs or proteins using a 
specialised software

Comparative approach



2626

• Comparison of the DNA sequence to nucleic acid databases
using Blastn (or equivalent) 

(- Detection of contaminating sequences (vectors...) 
Specialised blast: VecScreen)
- Detection of mRNAs potentially derived from the DNA 
sequence à comparison with mRNAs obtained from the same
species or from closely related species

• Alignment between the DNA sequence and the matched mRNAs
using specialised software 

- Fine determination of 5' and 3' UTRs and exons
- Software: EST2genome, Splign

Comparaison with mRNAs
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Use of RNA-seq data

• This is the type of data that has the greatest potential to improve
annotation

• Allows a better delimiation of exons, splice sites, and alternative 
splicing events

• But large amount of data, complex because often short Illumina 
reads

• 2 ways to use the reads
- Genome-independent de novo assembly of reads (ABySS, 
SOAPdenovo, Trinity). The resulting transcripts are then
aligned to the genome in the same way as seen for mRNA
- Directly aligned to the genome (TopHat, GSNAP, Scripture), 
then the alignments are assembled using Cufflink

Comparaison with mRNAs
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• Comparison of the translated DNA sequence (in the 6 frames) to 
protein databases using BLASTX 

- Detection of proteins potentially encoded by the 
sequence

• Alignment of matched proteins using specialised software
- Determination of initiation codon and intron/exon 
junctions
- Software: GeneWise

Comparison to proteins
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• Advantages
- Validates potential genes by comparison with
experimental data (mRNA, proteins) 
- Provides clues to protein function

• Limits
- Requires a priori knowledge
Does not find orphan sequences
Difficult with isolated genomes from a taxonomic point of 
view
- Propagates errors in libraries

Comparative approach
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Structure of prokaryotic genes

• Over 80% of the genome is coding
- Short intergenic sequences
- On average: one gene per 1,000 nucleotides (kb) 

• Simple gene structure
- Short transcribed but untranslated regions (3' and 5' UTR)
- No intron (with some exceptions)
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Structure of prokaryotic genes
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• Here is an extract from the genome sequence of 
Pseudoalteromonas sp. 

>AB057417 
aacgaaaagattaaaaatttatcattttttctcttggaattttttactctacccccatta
atgaatgcaaattagaaaagcttttttctgtactgttcagaaactgttaggagaactaaa
aaacatgaacattcgtcctttacaagatcgcgtaatcgttaaacgtctagaagaagaaac
aaaatctgctggcggtattgtattaactggctctgcagctgaaaaatcaactcgcggaga
agtagtagccgtaggtaatggtcgtattttagataacggtgacgttagagctttagaagt
aaaagccggtgacactgtgttatttggctcatatgttgagaaaactgaaaagatcgaagg
tcaagagtacctgatcatgcgtgaagacaacattttaggcattgtaggctaagcctactt
ttcgtttaacacacatttaagaatttagagg

Structure of prokaryotic genes
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• Analyse in 4 steps

1. ORF identification 
– ORFFinder

2. ORF validation 
– SmartBlast (GeneWise
if needed)

3. Statistical prediction of CDS
– GeneMark, GLIMMER

4. Statistical prediction of 
regulatory signals

– BPROM 

Proposed workflow



3434

ORFfinder

https://www.ncbi.nlm.nih.gov/orffinder/
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ORFfinder results
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SmartBlast

• SmartBlast compares the ORF against database (« landmark
database ») consisting of the proteomes of 27 species spread 
over a large phylogeny. Also compares against the nr database
https://blast.ncbi.nlm.nih.gov/smartblast/smartBlast.cgi?CMD=
Web&PAGE_TYPE=BlastDocs#searchSets

• It returns the 5 best results obtained against the « landmark
database »

• He then returns the results obtained against the « nr » database
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SmartBlast results

Tree of 
species Visualization

of alignmentsDomaines

Fonction

5 best results against « landmark » database

Results against « nr » database



3838

SmartBlast results

• Best hit against « landmark » database
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SmartBlast results

• Best hit against « nr » database
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• ORF : 65..412 on the strand + of the DNA sequence
- Codes a 115 aa protein + stop codon

• Alignments provided by SmartBLAST
- Query 21..115 : only a part of the ORF protein
So the ORF is not fully coding
The alignement starts at 21 => the CDS starts at 
65+(21-1)*3 = 125
End of the CDS at 412 
- Sbjct 1..95 : The protein from the database is complete
The predicted coding sequence is complete

• The alignments obtained with different sequences are good
- Prediction is reliable, no need for GeneWise

SmartBlast results
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GeneMark

http://exon.gatech.edu/GeneMark/
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GeneMark results

• GeneMark.hmm with Heuristic models

• Same result as ORFfinder; in contradiction with the start identified
by SmartBlast
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• GeneMark.hmm model adapted for Pseudoalteromonas sp. 

• Result in agreement with SmartBlast

• Best results with a model defined for the studied species

GeneMark results
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Bprom

http://www.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb
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Bprom results
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Summary of the analysis

• The methods lead to the same conclusion: the sequence
contains a single CDS 125...412 (including the termination
codon) 

• Additional information given by SmartBLAST: the CDS encodes 
a chaperone of the type Cpn10 / GroES

• Glimmer (statistical prediction) finds no CDS 
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• Several initiation codons (AUG) on the sequence: Which is the 
right one? 

• Possibility of alternative initiation codons (GUG, UUG) 
Confirmation by:
- Presence of RBS (Ribosome Binding Site) 
- Comparative analysis with other species
- Statistical prediction

• Incomplete genes (early stop codon, phase shift)
- Real (corrected during translation, pseudogenes) 
- Sequencing errors
- Detection by: BlastX reports inconsistencies (different
frames); comparison + prediction

• Overlapping genes
- Common in viruses, sometimes in bacteria (gene ends)

Prediction in bacteria: some pitfalls
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Alternative pipeline

Glimmer…

Richardson EJ, Watson M. The automatic annotation of bacterial genomes. Brief Bioinform. 2013 Jan;14(1):1-12.
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Eukaryotic gene structure

• Low proportion of protein coding sequences in genomes
- About 2% of the human genome

• Presence of a very large number of repeated sequences
- ~ 50% of the human genome

• Complex gene structure
- Long 3' and 5' untranslated regions (non-coding exons) 
- Presence of introns, alternative splicing
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Eukaryotic gene structure
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• Exon size not a multiple of 3 
- Codons cut by an intron
- Frame shift from one exon to another
- No strand change 

• Existence of short exons (~ 10 nt) 
- Above the resolution limits of software

• Existence of very long introns (> exons) 
- Difficulty in locating exons 

• Alternative splicing
- Concerns > 50% of human genes

Intron consequences
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Suggested workflow
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§ 905 bp mRNA from a human cell

§ Three steps analysis
1. Search for CDS in mRNA

BlastX + GeneWise

2. Localization of the gene corresponding to the mRNA
Blast "Genomes" + Est2genomes or Splign

3. Testing of statistical methods on the genome sequence
FGENESH, AUGUSTUS, GeneScan

Example: study of an mRNA
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Blastx results, graphic
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Blastx results, alignments
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Study of the alignment with the 2nd protein (1st is not relevant) 

• BATF_HUMAN 
Human protein, 100% identity => protein of interest

• Frame = +2: Coding sequence is on the + strand

• Query 341..616 / Sbjct 34..125 
- Need a specialised software to align this protein to the mRNA

• ATF-like basic leucine zipper transcriptional factor 
- May be a bZIP-type transcription factor

Blastx results report
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Wise

https://www.ebi.ac.uk/Tools/psa/genewise/
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Wise results
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• Comparison with the protein of interest (BATF_HUMAN) 
- BlastX does not align the whole protein with the 
mRNA because the beginning of the protein contains an 
low complexity region that has been masked by BlastX

• GeneWise gives a CDS at position 243..617+3 on the mRNA
- The protein is fully aligned with the mRNA

Wise results report
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Blastn result against the genome
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Blastn result against the genome, alignments
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EST2genome

http://www.bioinformatics.nl/cgi-bin/emboss/est2genome
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• So exon 1 start: 75522400+42-1

• CDS location on chromosome 14 region: 
join(284..346,2685..2789,24063..24272) 

• Determination of the position of exons on chr 14, region
75522400..75547000

EST2genome results
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Splign results
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Fgenesh results
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• 3 exons: identical to results obtained by sequence comparison
approach

- Only coding regions (the term mRNA is abused)

Augustus results
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• 3 exons: identical to results obtained by sequence comparison
approach

- Only coding parts

• PolyA tail predicted at the same location as FGENESH

GenScan results
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• All predictions agree on 3 exons 

• One additional coding exon predicted by FGENESH 
Alternative splicing ? 

• The encoded protein is probably a B-zip transcription factor

Summary of the analysis



6969

Automatic annotation of a whole genome

§ Use an annotation pipeline:
Maker, PASA, Gnomon …

§ Example: Maker

Cantarel BL, Korf I, Robb SM, Parra G, Ross E, Moore B, Holt C, Sánchez
Alvarado A, Yandell M. MAKER: an easy-to-use annotation pipeline 
designed for emerging model organism genomes. Genome Res. 2008 
Jan;18(1):188-96.

Campbell MS, Holt C, Moore B, Yandell M. Genome Annotation and Curation Using MAKER and MAKER-P. Curr Protoc Bioinformatics. 2014 Dec 12;48:4.11.1-39.
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• Five commonly used formats for annotations: GFF3, 
GenBank, BED, GTF and EMBL

GFF3à https://github.com/The-Sequence-
Ontology/Specifications/blob/master/gff3.md

• Use of a genome visualisation tool (IGV, Jbrows, 
GenomeView...)

Sequence in bp

Gene structure

CDS track

Illumina reads
alignment

Exemple de visualisation par GenomeView

Viewing annotation data
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Sequence
in FASTA 
forma

Viewing annotation data

Gene prediction by 
AUGUSTUS in GFF3 
format
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Visualising annotation data in GenomeView

Different
tracks
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