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Omics

Who works on such data ? Please give your name, lab, and kind of omic
data you are interested in.

Blanca Himes©2018 Himes Lab
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Examples of high-throughput experiments

Microarrays

High throughput
sequencing

©Haas and Zody, Nature Biotechnology

(2010)

Mass spectrometry

High content screening
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Extract of the program of the lecture

Context : High-throughput experiments using technologies such as
microarrays, next-generation sequencing or mass spectrometry usually
generate data with much more variables than individuals. Analysis of these
data requires either dimensionality reduction methods or special techniques
which improve variance estimation in statistical tests.

Requirements : Basic concepts in statistics (e.g. mean, variance, p-value)
and basic concepts in molecular biology (e.g. transcription and translation).

Note : it is not necessary to know in detail high-throughput techniques as
questions relative to normalisation of each technology will not be detailed
in this course. Only statistical techniques common to several omic data
analyses will be presented.
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Objectives

Objectives :

Share a common langage with statisticians or bioinformaticiens who
are specialists of omics data analysis.

Understand the main steps of a differential analysis of -omics data
and perform a differential analysis on simple use cases.

Comments :

Statistical analysis of omic data is a field included in the big field of
bioinformatics (english comprehension of the word), which covers
much more than differential analysis

The R software enables to study a lot of various applications with
omic data, especially using Bioconductor R packages
⇒ not very user friendly, but essential to master for those who
commonly analyse omics data
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Introduction

Caution : Simple use cases rely sometimes on assumptions which will not
be checked in your own experiment.

Do not forget :

Obtaining a result using a statistical procedure does not mean that
this result is reliable. If you do not know the assumptions behind,
please be careful with interpretation or ask an expert to help you.

Most of the time, not a unique solution ⇒ statisticians do not know
all statistical procedures developped (example of the Bioconductor
project : more than 2000 R packages) but have competences to
understand them.

”All models are wrong but some are useful” (G. Box, 1978)
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Introduction

All models are wrong (Box, JASA, 1976)

Since all models are wrong the scientist cannot obtain a ”correct” one
by excessive elaboration.

Since all models are wrong the scientist must be alert to what is
importantly wrong.

GM opinions :

Be careful with over-fitting, always validate on other patients or
samples a model trained from a training set.

Do not hesitate to call an expert to help with interpretation and
evaluate how wrong the model is

While statistics is very helpful to take decision, especially statistical
learning in artificial intelligence, human people must remain the final
decision-makers.
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Introduction

Some are useful (Box, 1978)

cunningly chosen parsimonious models often do provide remarkably
useful approximations.

any model is at best a useful fiction, there never was, or ever will be,
an exactly normal distribution or an exact linear relationship.
Nevertheless, enormous progress has been made by entertaining such
fictions and using them as approximations.

the question you need to ask is not ”Is the model true ?” (it never is)
but ”Is the model good enough for this particular application ?”

GM opinion :
Statistics offers great possibilities, the field is not limited to calculating
p-values. Do not hesitate to learn more and more.
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Content

Content :

Presentation of main steps of a statistical analysis involving data from
high-throughput experiments

Dimensionality reduction

Differential analysis of omics data, including multiple testing

Practice

A gene is declared differentially expressed if the observed difference
between two conditions is statistically significant, that is to say higher
than some natural random variation.
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Main steps

Plan

1 Main steps

2 Dimensionality reduction

3 Differential analysis of omics data

4 Multiple testing

5 Gene Set Enrichment Analysis

6 Conclusions
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Main steps

Main steps

Key steps for statisticians :

experimental design

normalization

choice of the type of analysis : differential analysis, score building,
network inference, . . .

In the case of differential analysis :

choice of the appropriate test statistic

multiple testing
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Main steps

Experimental design

To consult a statistician after an experiment is finished is often merely to
ask him to conduct a post-mortem examination. He can perhaps say what
the experiment died of (Ronald A. Fisher, Indian statistical congress, 1938,
vol. 4, p 17).

While a good design does not guarantee a successful experiment, a
suitably bad design guarantees a failed experiment (Kathleen Kerr, Inserm
workshop 145, 2003)
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Main steps

Experimental design

Anticipate, identify all factors of variation and collect metadata from
experiment

Adapt Fisher’s principles (1935) : randomization and blocking
AVOID CONFUSION between the biological variability of interest and
a biological or technical source of variation

Biological vs technical replicate

Biological replicate : Repetition of the same experimental protocol but
independent data acquisition (several samples).
Technical replicate : Same biological material but independent replications
of the technical steps (several extracts from the same sample).

13 / 62



Main steps

Experimental design

Find genes that are differentially expressed between a normal skin and a
damaged skin on mouse

Sample Condition RNA extraction date

S1 control July 12th, 2016
S2 control July 12th, 2016
S3 control July 12th, 2016
S4 wound July 20th, 2016
S5 wound July 20th, 2016
S6 wound July 20th, 2016

Confusion between skin status and RNA extraction date : comparing
healthy and damaged skin is comparing RNAs extracted July 12th and
20th
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Main steps

Experimental design

Find genes that are differentially expressed between a normal skin and a
damaged skin on mouse

Sample Condition RNA extraction date

mouse

S1 control July 12th, 2016

m1

S2 control July 20th, 2016

m2

S3 control July 25th, 2016

m3

S4 wound July 12th, 2016

m1

S5 wound July 20th, 2016

m2

S6 wound July 25th, 2016

m3

One solution : the day effect is evenly distributed across conditions.

In case of paired data the pairing may be confounded with the batch effect.
These effects are NOT confounded with the biological effect of interest.
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Main steps

Experimental design
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Main steps

Normalisation

Definition

Normalization is a process designed to identify and correct technical
biases removing the least possible biological signal. This step is
technology and platform-dependant.

Within-sample normalization

Normalization enabling comparisons of measures from a same sample.

Between-sample normalization

Normalization enabling comparisons of measures from different samples.
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Main steps

Normalization

Examples of sources of within-sample biases

fluorochrome in two-color microarrays

GC content

gene length in high throughput sequencing

Examples of sources of between-sample biases

Depth in high throughput sequencing(total number of sequenced and
mapped reads)

Sampling bias in library construction

Protein degradation

Presence of majority fragments

. . .
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Main steps

Normalization

Normalization does not only depend on the technology but also on the
statistical question raised.

Example 1 : in a differential analysis context where the analysis is
performed gene-by-gene, it is not necessary to normalize for gene length.

Example 2 : while dimension reduction techniques based on distances need
to standardise the data (center and reduce), reduction is clearly
unappropriate when performing differential analyses based on special
modeling of variances.

Boxplots are very useful to check the quality of a between-sample
normalization.
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Main steps

Boxplot

Key elements of a boxplot

box : rectangle whose length is between
the 1st (lower) and the 3rd (upper)
quartiles
⇒ 50% of values belong to the interval.

whiskers : vertical lines of length
1, 5 ∗ (Q3−Q1), shortened to minimum
and maximum of observations if there
are no values outside the whiskers.

a line within the rectangle : the median.
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Main steps

Normalization

Common normalization : Log transform the data

(Callister et al., 2007)
Even though the relationship between peptide abundance and detector
measurement is expected to be linear, log transformation has several
advantages similar to those highlighted for microarray data. Using such a
transform converts the distribution of ratios of abundance values of
peptides into a more symmetric, almost normal distribution. This allows
the use of several robust normalization techniques that have been
developed for such data. Also, a log transform reduces the leverage of a
low number of highly abundant species on the regression analysis used by
these robust techniques.
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Main steps

Normalization

Caution : Log-scaling might not be sufficient to obtain normal
distributions.

Example : In high throughput sequencing, techniques developed for
microarrays can not be directly applied as counts and intensities do not
have the same natural distribution (poisson or negative binomial vs
normal).

When many replicates are available, the distribution of the mean tends to
follow a normal distribution. However, it is frequent in studies with omics
data not to have enough replicates to use this approximation . . .

21 / 62



Main steps

Negative Binomial Models

A supplementary dispersion parameter ϕ to model the variance

Poisson vs Negative Binomial models

Technical variability is the main source of variability in low counts, whereas
biological variability is dominant in high counts
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Main steps

Normalization

Another common normalization (but not necessary always the best)

Quantile normalization :

Hypothesis : the distribution of peptide abundances or gene expression in
different samples is similar. This expectation can be accounted for by
adjusting observed distributions.

Exercise : Calculate the means row by row and for each column, replace
the values by the rank in the column.

3 9 3 8 7 7 6 4
6 5 7 4 3 4 3 9
9 4 8 3 8 8 9 6
4 8 4 5 4 9 5 7
7 6 6 7 9 3 4 8
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Main steps

Normalization

Means : 5.9 ; 5.1 ; 6.9 ; 5.8 ; 6.2

Ranks :

1 5 1 5 3 3 4 1
3 2 4 2 1 2 1 5
5 1 5 1 4 4 5 2
2 4 2 3 2 5 3 3
4 3 3 4 5 1 2 4

Replace, in each column, the rank k by the kth sorted mean value. You
will thus obtain the quantile-normalized table.
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Main steps

Normalization

5.1 6.9 5.1 6.9 5.9 5.9 6.2 5.1
5.9 5.8 6.2 5.8 5.1 5.8 5.1 6.9
6.9 5.1 6.9 5.1 6.2 6.2 6.9 5.8
5.8 6.2 5.8 5.9 5.8 6.9 5.9 5.9
6.2 5.9 5.9 6.2 6.9 5.1 5.8 6.2

Caution : this normalization provides very good boxplots but can heavily
change the measures. It can also favor null variances on rows. Be careful
when using it, if not recommanded by the platform which generated the
data.
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Main steps

Imputation of missing values in Perseus

Source : Tyanova et al., Nature Methods, 2016

(a) No down-shift a do not simulate low abundant missing values.
(b) Down-shift of 1.8 and distribution width of 0.5 simulate the
assumption of low abundant proteins giving rise to missing values.
(c) Down-shift of 3.6 results in an undesirable bi-modal distribution.
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Dimensionality reduction

Plan
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2 Dimensionality reduction

3 Differential analysis of omics data

4 Multiple testing

5 Gene Set Enrichment Analysis

6 Conclusions
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Dimensionality reduction

Dimensionality reduction

Problem : n individuals, p quantitative variables (e.g. genes, peptides,
proteins, siRNA, . . .)

X =


x11 . . . x1n
x21 . . . x2n
. . . . . . . . .
xp1 . . . xpn


xij : value of variable j
for individual i .

Possibility to visualize pair-wise relations by
scatter plots :

When p is large, this is not efficient !

28 / 62



Dimensionality reduction

Principal components analysis

Principal components analysis (PCA) :

Main goal : explore the structure of the dataset to better understand the
proximity between samples and detect possible problems → often used as
a quality control step

synthetize information and visualize points in a space of reduced
dimension

describe links between variables and which ones explain most
variability

highlight homogeneous subgroups

detect aberrant individuals
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Dimensionality reduction

Principal components analysis
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Dimensionality reduction

Principal components analysis

Principle :

Find axes on which one can project points to obtain a space of reduced
dimension comprehensible by the eye.

Projection is a distorting operation ⇒ we begin by looking for an axis on
which the cloud of points is distorting the less possible during the
projection.
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Dimensionality reduction

Principal components analysis

PCA uses a criterion based on variance to build new axes, also called
components, in order to preserve variability.

A pre-requisite to apply PCA is to make the variance be independent of
the mean.

New components are linear combinations of the initial variables. If you
want to force the method to select only a few variables, you need to use
variations of PCA, such as sparse PCA, which often includes a Lasso
penalty (Tibshirani, 1996).

32 / 62



Differential analysis of omics data
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Differential analysis of omics data

Preamble : Interpretation - Statistical significance and
practical importance

A gene is declared differentially expressed (DE) if the observed difference
between two conditions is statistically significant, that is to say higher
than some natural random variation.

Fold change : measure describing how much a quantity changes. Various
definitions (see Wikipedia, ipfs.io). In this course : ratio between
measurements. If condition A measures 50 and condition B measures 100,
fold change = 100/50 =2 and measure B is twice higher than measure A.

Log fold change : mean of normalised values in condition 1 - mean of
normalised values in condition 2 (log B/A= log B - log A)

Question : Why not only using the fold change or log fold change to find
differentially expressed genes ?
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Differential analysis of omics data

Preamble : Interpretation - Statistical significance and
practical importance

Fold change does not take the variance of the samples into account.
Problematic since variability in omic data is partially marker-specific.

The difference between 102 and 100 is the same as between 4 and 2
but does not seem to have the same importance, regarding the
baseline value.

Example of test statistic, which takes into account the variance of the
samples :

T =
X̄1 − X̄2

σ
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Differential analysis of omics data

Preamble : Interpretation - Statistical significance and
practical importance

Practical importance and statistical significance (detectability) have
little to do with each other.

An effect can be important, but undetectable (statistically
insignificant) because the data are few, irrelevant, or of poor quality.

An effect can be statistically significant (detectable) even if it is small
and unimportant, if the data are many and of high quality.
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Differential analysis of omics data

Volcano plot

Compromise between statistical significance and importance.
One can adapt the definition of differentially expressed by saying for
exemple ”A gene is declared differentially expressed (DE) if the observed
difference between two conditions is statistically significant at 5% and the
fold change is higher than 2”
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Differential analysis of omics data

Statistical test

State the null and the alternative hypotheses
H0= {the mean expression of the gene (or protein) is identical between the two
conditions}
H1= {the mean expression of the gene (or protein) is different between the two

conditions}

Consider the statistical assumptions (e.g. independence) and
distributions (e.g. normal, negative binomial, . . .)

Calculate the appropriate test statistic T

Derive the distribution of the test statistic under the null hypothesis
from the assumptions.

Select a significance level (α), a probability threshold below which the
null hypothesis will be rejected.

Remark : H0 is always preferred. No sufficient proof → no rejection. When
we can not reject H0, this does not mean that H0 is true.
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Differential analysis of omics data

Statistical test

p-value p(t)

For a realisation t of the T test statistic p(t) is the probability (calculating
under H0) of obtaining a test statistic at least as extreme as the one that
was actually observed.

In bilateral case :
p(t) = PH0{|T | ≥ |t|}

The p-value measures the agreement between H0 and the obtained result.
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Differential analysis of omics data

Estimating the variance : the key question

Problem

Estimate a reliable variance from a very small number of replicates
(sometimes 3 or 5)

Why using sophisticated approaches ?

gene-specific tests ⇒ lack of sensitivity (proportion of true positives
among positives) due to the lack of information

common dispersion parameter for all tests ⇒ many false positives

Example : empirical bayesian approaches = compromise between
gene-specific and common dispersion parameter estimation
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Differential analysis of omics data

Example of empirical bayesian approach in DESeq2

Hypothesis : genes of similar average expression strength have similar
dispersion

1 Estimate gene-wise dispersion estimates using maximum likelihood
(ML) (black dots)

2 Fit a smooth curve (red line)
3 Shrink the gene-wise dispersion estimates (empirical Bayes approach)

toward the values predicted by the curve to obtain final dispersion
values (blue arrow heads).
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Differential analysis of omics data

Empirical bayesian approaches

For microarrays : package limma

For bulk RNA-Seq : edgeR, DESeq2 (negative binomial distributions) or
limma-voom

For proteomic and metabolomic data : limma can be used after
appropriate normalization
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Multiple testing

Plan

1 Main steps

2 Dimensionality reduction

3 Differential analysis of omics data

4 Multiple testing

5 Gene Set Enrichment Analysis

6 Conclusions

43 / 62



Multiple testing

Multiple Testing

False positive (FP) : A non differentially expressed (DE) gene which is
declared DE.

For all ’genes’, we test H0 (gene i is not DE) vs H1 (the gene is DE) using
a statistical test

Problem

Let assume all the G genes are not DE. Each test is performed at α level
Ex : G = 10000 genes and α = 0.05 → E (FP) = 500 genes.
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Multiple testing

Simultaneous tests of G null hypotheses

Reality
Declared

non diff. exp.
Declared
diff. exp.

G0 non DE genes True Negatives (TN) False Positives (FP)

G1 DE genes False Negatives (FN) True Positives (TP)

G Genes N Negatives P Positives

Aim : minimize FP and FN.
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Multiple testing

Standard assumption for p-value distribution
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Multiple testing

The Family Wise Error Rate (FWER)

Definition

Probability of having at least one Type I error (false positive), of declaring
DE at least one non DE gene.

FWER = P(FP ≥ 1)

The Bonferroni procedure

Either each test is realized at α = α∗/G level
or use of adjusted pvalue pBonfi = min(1, pi ∗ G ) and FWER ≤ α∗.
For G = 2000 and α∗ = 0.05 ; α = 2.5.10−5.

Easy but conservative and not powerful.
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Multiple testing

The False Discovery Rate (FDR)

Idea : Do not control the error rate but the proportion of error
⇒ less conservative than control of the FWER.

Definition

The false discovery rate of (Benjamini Hochberg, 1995) is the expected
proportion of Type I errors among the rejected hypotheses

FDR = E(FP/P) if P > 0 and 0 if P = 0

Prop

FDR ≤ FWER
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Multiple testing

p-values histograms for diagnosis

Examples of expected overall distribution

(a) : the most desirable shape

(b) : very low counts genes usually have large p-values

(c) : do not expect positive tests after correction
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Multiple testing

p-values histograms for diagnosis

Examples of not expected overall distribution

(a) : indicates a batch effect (confounding hidden variables)

(b) : the test statistics may be inappropriate (due to strong correlation
structure for instance)

(c) : discrete distribution of p-values : unexpected
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Multiple testing

Multiple testing : key points

Important to control for multiple tests

FDR or FWER depends on the cost associated to FN and FP

Controlling the FWER :

Having a great confidence on the DE elements (strong control). Accepting
to not detect some elements (lack of sensitivity ⇔ a few DE elements)

Controlling the FDR :

Accepting a proportion of FP among DE elements. Very interesting in
exploratory study.
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Gene Set Enrichment Analysis
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Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA)

Gene sets (Subramanian et al., 2005) : groups of genes that share common
biological function, chromosomal location, or regulation.

Motivation :

GSEA can reveal many biological pathways in common where single-gene
analyses find little similarities between independent studies (Subramanian
et al., 2005)

Moelcular Signatures Database available at :
http://software.broadinstitute.org/gsea/msigdb/index.jsp
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Gene Set Enrichment Analysis

Over-Representation Analysis (ORA)

Compute overlaps with other gene sets in MSigDB

Use of the hypergeometric distribution which describes the probability of k
successes (random draws for which the object drawn has a specified
feature) in n draws, without replacement, from a finite population of size
N that contains exactly K objects with that feature, wherein each draw is
either a success or a failure.

The hypergeometric uses the hypergeometric distribution to identify which
gene-sets are over-represented in the list of differentially expressed genes.
This test is identical to the corresponding one-tailed version of Fisher’s
exact test.
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Gene Set Enrichment Analysis

GSEA history

History of a very cited procedure implemented in the software available on
the Broad Institute website :

first paper : Mootha et al., Nature Genetics, 2004

Damian and Gorfine published Statistical concerns about the GSEA
procedure, Nature Genetics, 2004

Subramanian et al., PNAS, 2005 : definition of a normalized
enrichment score (NES)
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Gene Set Enrichment Analysis

GSEA

To compute the enrichment score (ES), no need to pre-specify cut-offs on
p-values and log fold changes, the method asks for a ranked list L.

The user can load raw or normalised data and ask the software to rank the
data according to a criterion. Otherwise, it is possible to give a pre-ranked
list calculated outside the software, e.g. by limma.

Various criteria provided in the guide : http://software.
broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html
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Gene Set Enrichment Analysis

GSEA

The ES reflects the degree to which a set S is over-represented at the
extremes (top or bottom) of the entire ranked list L.

The score is calculated by walking down the list L, increasing a
running-sum statistic when we encounter a gene in S and decreasing it
when we encounter genes not in S.

The magnitude of the increment depends on the ranking metric of the
gene with the phenotype. The enrichment score is the maximum deviation
from zero encountered in the random walk.
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Gene Set Enrichment Analysis

GSEA
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Gene Set Enrichment Analysis

GSEA

Estimation of the statistical significance (raw p-value) using phenotype
permutations.

advantage of phenotype permutations : preserving the correlation
structure between genes

not advised to use phenotype permutations when less than 7 samples
per condition. In that case, use gene permutations

in the case of a pre-ranked list, the only possibility is to perform gene
permutations

Normalization of the ES for each gene set to account for the size of the set

Adjustment for multiple testing with False Discovery Rate (q-value)
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Conclusions

Conclusions

Include replicates when you want to generalize !

Normalisation depends both on the type of omics and on the
statistical question.

The statistical procedure also depends on the biological question.

Differential analysis is exploratory. Do not forget to confirm by
biological experiments.

Do not forget to correct for multiple testing if you do not want to
waste money in validation studies !

The cost of statistical analysis can be inversely related to the number
of replicates : experiments with few replicates necessit specific
methods. The need for ’sophisticated’ methods decreases when the
number of replicates increases.
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Conclusions

Want to go further ?

To learn more :

training in R : https:
//doctorat.univ-lille.fr/college-doctoral/formations/

training in high-throughput sequencing analysis :
https://bilille.univ-lille.fr/training/training-offer

To obtain help in statistical analysis of omics data :
write an e-mail to bilille@univ-lille.fr

62 / 62

https://doctorat.univ-lille.fr/college-doctoral/formations/
https://doctorat.univ-lille.fr/college-doctoral/formations/
https://bilille.univ-lille.fr/training/training-offer


Conclusions

Annex : SARtools

SARTools : Statistical Analysis of RNA-Seq Tools (Varet et al., 2016)

exports the results into easily readable tab-delimited files

generates a HTML report which displays all the figures produced,
explains the statistical methods and gives the results of the
differential analysis.

Exploratory data analysis

Differential analysis including normalization and multiple testing

Available on R and Galaxy

63 / 62



Conclusions

Annex : Exploratory data analysis

Sample comparison for RNA-Seq (Schulze et al., 2012)

Pearson’s correlation coefficient

widely used . . .

. . .but highly dependent on sequencing depth and the range of
expression samples inherent to the sample.

SERE : Simple Error Ratio Estimate

ratio of observed variation to what would be expected from an ideal
Poisson experiment

interpretation unambiguous regardless of the total read count or the
range of expression

score of 1 : faithful replication

score of 0 : data duplication

scores > 1 true global differences between RNA-Seq libraries
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Conclusions

Annex : SERE

scores between 0 and 1 ⇒ underdispersion (variance smaller than mean)

scores greater than 1 : overdispersion ⇒ adapted to biological replicates
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Conclusions

Annex : Sample comparison for RNA-Seq

total read count dependence sensitivity to contamination

source :

(Schulze et al., 2012)
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