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General Introduction
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Goals

This course main goals:

● An overview of RNA-seq data analysis

● Identify the (key issues/points) (critical steps/parameters)
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Warning !
This is NOT a course to train you as a bioinformatician, and this course will 
NOT allow you to design an analysis pipeline set-up for your specific needs

This course WILL give you the basis information to understand and run a 
generic RNA-seq analysis, its key steps and problematics, and how to interact 
with bioinformaticians/bioanalysts that can analyze your RNA-seq datasets

4



Preliminary

Transcriptome/transcript

Transcriptomics

(Alternative) isoform

Splicing
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Sequencing: overview

6



How to make cDNA libraries

  

- Extract RNA, convert to cDNA
- pass to next gen sequencer
- millions to billions of reads

make cDNA?

- Prime mRNA with random hexamers R6
- reverse transcriptase => cDNA first strand synthesis
- then second strand

  => illumina cDNA library
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How to sequence (1)

  

- polyA+
- Ribo-Zero (human, mouse, plants, bacteria, …)

        (ARN = 90% of ARNr, 1-2%  of ARNm)

- in prokaryotes: no polyA (= no capture), no splicing (= less complex)

- paired-end
- replicates
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How to sequence (2)
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RNA-seq
-reads around 150-200 bp

-the number of detected transcripts increases with the sequencing depth

-the expression measure is more precise with more depth 

-5 millions reads can be enough to detect genes mildly-highly expressed in 
human

-100 millions must be preferred to detect lowly expressed genes (see for 
instance saturation curves in “Differential expression in RNA-seq: a matter of

depth.” Genome Res. 2011)

- these numbers depends on the species/tissues (complex splicing...)  

-keep replicates in mind
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There are plenty of protocols...

                                                                                                      

from Clara Benoit Pilven’s PhD thesis 11



Resources: genomes, transcriptomes, annotations

From Rachel Legendre (Institut Pasteur)
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FASTA/Q formats

  

FASTA format:
>61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTT
GTATTTGAAAAACACTTTCCGGCCAT

FASTQ format:
@61DFRAAXX100204:1:100:10494:3070/1 
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCA 
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FASTA/Q formats

Quality Error rate

10 10%

20 1%

30 0.1%

40 0.01%
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What people do with their RNA-seq

From J. Audoux’s PhD thesis 15



Nature Communications 8, Article number: 59 (2017) 

It’s complicated
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Outcomes of RNA-seq studies

- gene annotation
- protein/function prediction
- gene/splicing quantification
- isoform discovery/fusion transcripts/lncRNA...
- variant calling
- methylations
- RNA structures
-
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Cleaning - Preprocessing
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Known biases in RNA-seq
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Known biases in RNA-seq

Biological sample:

● presence of pre-mRNA
● 3’ bias over-represented (RNA degradation)
● contaminations

Library preparation:

● DNAse fail
● pcr bias
● variable insert size (smaller than sequencing length)
● reads with no inserts

Sequencing:

● quality drops at the end of reads

20



Quality Control (QC)

Quality Control (QC) is important to:

● Check if your sample sequencing went well

● Know when you need to sequence again (sequencing platform QC fail)

● Identify potential problems that can be fixed, or not

● Follow the impact of preprocessing steps

⇒ FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

+ MultiQC (https://multiqc.info/) when comparing multiple datasets 21

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/


Practical: Quality Control (QC)

Open Galaxy

GTN Practical: Reference-based RNA-seq data analysis
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Loss of base call accuracy with increasing 
sequencing cycles Source: https://sequencing.qcfail.com
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https://sequencing.qcfail.com


Position specific failures of flowcells

Source: https://sequencing.qcfail.com24

https://sequencing.qcfail.com


Positional sequence bias in random primed 
libraries Source: https://sequencing.qcfail.com
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https://sequencing.qcfail.com


Contamination with adapter dimers
Source: https://sequencing.qcfail.com
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https://sequencing.qcfail.com


Libraries contain technical duplication
Source: https://sequencing.qcfail.com
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https://sequencing.qcfail.com


GC content / Contamination ?
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GC content / Contamination ?
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Cleaning - Preprocessing

Cleaning has to be done in the reverse order that errors were generated.

1. Sequencing errors: quality trimming and filtering, Ns removal
2. Library preparation: adapters removal
3. Sample contamination: rRNA, mito, other contaminants

Note 1: step 1 (quality trimming) is not considered critical anymore and could 
even hinder downstream tools/algorithms.

Note 2: If the reads are going to be aligned against a reference genome, this 
whole process can be skipped or applied very lightly
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Cleaning - Preprocessing

Raw 
dataset

FastQC

quality, N, 
adapters 
cleaning 

(Trimmomatic)

quality-c
leaned 
dataset

rRNA 
removal 

(SortMeRNA)

FastQC FastQC

Final 
dataset

contaminant 
removal (?)
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To map or not to map ?
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With reference RNA-seq
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W/ reference RNA-seq. For what purpose ?

Mainly:

● Differential expression
○ between genes
○ between transcripts/isoformes

● Transcriptome assembly
○ variant calling
○ isoforme discovery
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What people do with their RNA-seq

From J. Audoux’s PhD thesis 35



RNA-seq w/ ref
raw/cleaned 
sequencing 

dataset

Count gene 
expression

Mapping
Reference 
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Transcriptome 
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Assembled 
transcripts

Reference 
genome 

sequence Reference 
transcriptome

Gene 
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Gene 
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Transcript 
counts
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Transcript 
pseudo-counts

aligned 
reads

Pseudo-mapping
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The champion: Tuxedo Suite, “Classic” version

Nat Protoc. 2012;7(3):562–578. doi:10.1038/nprot.2012.016
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The champion: Tuxedo Suite, “Classic” version

Nat Protoc. 2012;7(3):562–578. doi:10.1038/nprot.2012.016

EXP
IRED
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The champion: Tuxedo Suite, New version

HISAT/HISAT2: splice aware aligner

StringTie: Transcriptome assembler

Ballgown: Differential expression analysis

Nat Protoc. 2016;11(9):1650–1667. doi:10.1038/nprot.2016.095 39



Counting gene expression from alignments

40Deschamps-Francoeur, et al. 2020. doi:10.1016/j.csbj.2020.06.014



Counting gene expression from alignments

41Deschamps-Francoeur, et al. 2020. doi:10.1016/j.csbj.2020.06.014



RNA-seq w/ ref
raw/cleaned 
sequencing 

dataset

Count gene 
expression
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Practical: Mapping and Quantification

Open Galaxy

GTN Practical: Reference-based RNA-seq data analysis
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Recommended pipeline (as of Sept 2021)

● Transcriptome assembly: HISAT2 + StringTie (+ Ballgown ?)

● Transcript/Gene quantification with mapping: STAR + Salmon

● Mapping-less transcript quantification: Kallisto or Salmon
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De novo RNA-seq
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De novo approaches

❏ De novo methods are approaches that are free from a reference 
for producing results

❏ Reference-based approaches have limitations as results depends 
on the quality of the reference

❏ Sometimes we don’t even have a reference
❏ De novo and reference-based are complementary 
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Why do we need de novo approaches

Aren’t references good enough?

❏ Disease-associated transcripts
❏ Genetic polymorphism in transcripts
❏ de novo methods are helping creating tomorrow’s references
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The more novel and specific is your need, the more likely you need new 
bioinformatics (and de novo)
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What can be done with de novo methods

❏ transcript assembly + quantification
❏ genetic polymorphism detection
❏ alternative transcript detection + quantification
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The de novo assembly challenge
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The de novo assembly challenge
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The de novo assembly challenge
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Assembly recap

Assembly is like taking a step after another in a maze

One step is a group of nucleotides
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Assembly recap

Until you have a choice to make :
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Greedy algorithms

local choices 
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Greedy algorithms

local choices can lead to bad decisions
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All vs all overlaps algorithms

Have a global view of the possibilities in the “maze” 

Ideal but… quadratic
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de Bruijn graph assembly

With de Bruijn graphs we walk in the maze nucleotide by nucleotide:
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de Bruijn graph assembly

Your next step must correspond to the nucleotide that comes after in the 
original transcript

Result: concatenation of the nucleotides (AGA…)
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de Bruijn graph assembly
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de Bruijn graph assembly

Some dead ends and other bifurcations can be seen
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de Bruijn graph assembly

Store the “maze” in a graph structure (de Bruijn graph)

❏ helps with local choices
❏ cost efficient (RAM & runtime)
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de Bruijn graph in practice: k-mers

k-mers: why don’t we use reads
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de Bruijn graph in practice: k-mers
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de Bruijn graph in practice: k-mers

k-mers help bridging the assembly

they are key elements to work with the dBG

in practice implementations allow using several k sizes

tradeoff  larger k: more conservative /smaller k: more 
gaps filled in the graph
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Path in the De Bruijn graph

assembly : a set of gap-less sequences extracted from paths covering 
the graph (after some modifications to the graph…)
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Vocabulary: bubbles/bulges
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Vocabulary: tips/dead ends
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An assembly generally is
- smaller than the reference, 
- fragmented

- missing reads create gaps

- repeats fragment assemblies 
  and reduce total size
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Contrasting genome and transcriptome assemblies

genome

-uniform coverage
-single contig per locus
-double stranded
-theory: one massive graph per chromosome
-practice: repeats aggregate, contigs 
 smaller than chromosomes

transcriptome
-exponentially distributed coverage
-multiple contigs per locus
-strand specific
- theory: thousands of small disjoint 
  graphs, one per gene
-practice: gene families, ALU & TE, 
 low covered
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Contrasting genome and transcriptome assemblies

  

Despite these differences, DNA-seq assembly methods apply:

- Construct a de Bruijn graph (same as DNA) 
- Output contigs (same as DNA) 
- Allow to re-use the same contig in many different transcripts (new part)
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Real instance graphs

                              

                                                                              

                                                                                      

 Credit: ERABLE team (Lyon)

graph from shallow 
covered Drosophila 
dataset 

zoomed-in bubbles   
(+ tips)

       gene family
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There is no single solution for assembly...

Conclusions of the GAGE benchmark : in terms of assembly quality, there is no 
single best assembler. Applies to RNA-seq.

Main tools:

-TransAbyss, Robertson et al. Nat. Met 2010 https://github.com/bcgsc/transabyss

-Bridger, Chang et al. Genome Biol. 2015 https://github.com/fmaguire/Bridger_Assembler

-SOAPdenovo-Trans, Xie et al. Bioinformatics 2014 
https://github.com/aquaskyline/SOAPdenovo2

-Trinity, Grabherr et al. Nat. Biotechnol. 2011 
https://github.com/trinityrnaseq/trinityrnaseq/wiki

- rnaSPAdes, Bushmanov et al. GigaScience 2019 http://cab.spbu.ru/software/spades/
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https://github.com/bcgsc/transabyss
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The main building blocks in theory

1. (optional) correct the reads (for instance BayesHammer in rnaSPAdes)
2. build a graph from the reads (remove k-mers seen once)
3. remove likely sequencing errors (tips)
4. remove known patterns (bubbles)
5. return simple paths (i.e. contigs), allow nodes to be used several times
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Warning: what’s in the paper is different than 
what’s in the implementation...
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Trinity assembler

  

- Inchworm de Bruijn graph construction, part 1 

- Chrysalis de Bruijn graph construction, part 2 

- Butterfly Graph traversal using reads, isoforms enumeration
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Trinity: detail
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Trinity: detail
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Trinity: detail
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Trinity output

>TRINITY_DN1000_c115_g5_i1 len=247 path=[31015:0-148 23018:149-246]

 AATCTTTTTTGGTATTGGCAGTACTGTGCTCTGGGTAGTGATTAGGGCAAAAGAAGACAC

 ACAATAAAGAACCAGGTGTTAGACGTCAGCAAGTCAAGGCCTTGGTTCTCAGCAGACAGA

 AGACAGCCCTTCTCAATCCTCATCCCTTCCCTGAACAGACATGTCTTCTGCAAGCTTCTC

 CAAGTCAGTTGTTCACAGGAACATCATCAGAATAAATTTGAAATTATGATTAGTATCTGA

 TAAAGCA

-Trinity read cluster 'TRINITY_DN1000_c115'

- gene 'g5'

- isoform 'i1'

-path=[31015:0-148 23018:149-246]") indicates the path traversed in the Trinity de Bruijn graph to construct that transcript
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Normalization effects on assembly (example of 
Trinity)
                                                                                                                  From Brian                                                                                                                      

                                                                                                                  Haas
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Normalization effects on assembly (example of 
Trinity)
                                                                                                                  From Brian                                                                                                                      

                                                                                                                  Haas
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Errors made by assemblers
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Assembly quality assessment

  

In transcriptome assemblies 

● N50 is not very useful. 
○ unreasonable isoform annotation for long transcripts drives higher N50
○ very sensitive reconstruction for short lowly expressed transcripts leads to lower N50

95%-assembled isoforms statistics 
reference-free evaluation must be preferred
read remapping

Main tools:
● rnaQuast http://cab.spbu.ru/software/rnaquast/
● Transrate http://hibberdlab.com/transrate/
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Visualization: Bandage
https://rrwick.github.io/Bandage/ 
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https://rrwick.github.io/Bandage/


Meta-practices 

1- Read surveys, Twitter, blogs 
2. Pick two assemblers 
3. Run each assembler at least two times (different parameters) 
4. Compare assemblies 
5. If possible, visualize them

An assembly is not the absolute truth, it is a mostly complete, generally 
fragmented and mostly accurate hypothesis

Currently, Trinity, RNASpades and TransAbyss could be pointed as the most 
trustworthy/qualitative
(for known species. Not one tool for all issues).
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Practical: Trinity assembly
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Assembly does not output all variants
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KISSPLICE

Goal: instead of assembling full-length transcripts, KISSPLICE (Sacomoto et al. 
2012) focuses on assembling ONLY the bubbles that contain events and 
enumerate the maximum of them
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KISSPLICE: graph cleaning + local assembly
  

example: discard if ratio is
<0.05
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Variants in local assembly
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KISSPLICE’s output
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Post-processings

94

for quantification only
see de-Kupl 
Audoux et al. 2017



KISSPLICE case studies
Discover splicing events: 
Benoit Pilven et al. 2018  

                                                                                        
Farline: mapping                                                                           
B found only by Kissplice (not 
annotated)                                                                      
C found only by Kissplice 
(paralog)                                                                                  
D  found only by mapping 
(Alu repeat)

Discover SNPs in pooled 
RNA-seq data: 
Lopez-Maestre et al. 2016 

Discover SNPs in pooled RNA-seq: Lopez-Maestre et al. 2016 95



Practical: Kissplice
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Long reads : the future present of transcriptomics

Long reads overview

Possibilities & pipelines
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Limitations of short reads

❏ recent studies suggest that our reference transcriptomes miss 
isoforms

❏ in particular in the context of alternative splicing
❏ de novo assembly of species with unknown/hardly known 

transcriptomes is still a challenge
❏ the mandatory cDNA step in short reads protocols implies bias
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Long reads technologies

❏ sequencing of long (>10kb) molecules is possible 
❏ full RNAs !

❏ with a higher (~1-5% to 14%) error rate
❏ error profile is different from SR: indels in 

homopolymers
❏ some allow to sequence directly RNA (reduced bias, 

epitranscriptomics)
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Long reads technologies

from Shanika L. Amarasinghe et al. Genome Biol. 2020
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-1935-5#auth-Shanika_L_-Amarasinghe


Pacific Biosciences (Pacbio)

❏ in the case of RNA, a fragment is read several times and a 
consensus is computed

❏ read length limited by the longevity of the polymerase
❏ circular consensus sequence quality = f(fragment length, pol 

longevity)
❏ 4 passes : 1% error (0.1% reached after 9 passes)
❏ bias for indels in homopolymers
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Pacific Biosciences (Pacbio)

❏  the protocol is better suited for studying isoform 
identification only (not quantification)

❏ initial overrepresentation of shorter molecules lead to 
size selection which introduces a bias

❏ mitigation solutions still in progress
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Oxford Nanopore technologies (ONT)

❏ no limit to read length
❏ the fragment is read only once in the pore
❏ read quality depends on the speed of the fragment through the 

pore
❏ quality decreases in the late stages of sequencing

❏ error rate >5%
❏ bias for indels in homopolymers
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Oxford Nanopore technologies (ONT)

❏ 1D sequencing protocol : single pass of strands 
❏ 1D2 protocol: sequence the complementary strand 

immediately after the forward strand and compute a 
consensus

❏ accuracy over homopolymers is in progress (from R10 
chemistry)
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Oxford Nanopore technologies (ONT)'s RNA direct

Methods based on reverse transcription:

❏ Template switching and artifactual splicing 
❏ Loss of strandedness information 
❏ Loss of base modifications 
❏ Propagation of error due to PCR

Direct RNA

❏ no bias due to PCR
❏ possible to study some RNA modifications
❏ as of today not adequate for quantification (too much material 

is required)
105
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material from Oxford Nanopore



What has been studied with long reads so far

Near mature: 

❏ quantification of already known genes and isoforms 
❏ quantification of of novel isoforms from known genes  ex
❏ detection and characterization of the different isoforms and 

genes exon structure without quantification ( PacBio’s  
“Iso-Seq” method)
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What has been studied with long reads so far

Exploratory:

❏ RNA of paralogous genes (Dougherty et al., 2018, Chen et al., 
2017) 

❏ fusion transcripts (Nattestad et al., 2018). 
❏ allele-specific expression (Tilgner et al., 2014), avelier et al., 

2015). 
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Spirit of most analysis pipelines
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Isoform detection: PacBio’s Iso-Seq3 + 
ToFU/Cupcake

https://github.com/ylipacbio/IsoSeq3/

❏ will tend to merge alternative transcripts (heavily depends on 
the reference quality)

❏ computationally expensive
❏ tailored to Pacbio reads only
❏ scripts for exon-junction description and quantification
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https://github.com/ylipacbio/IsoSeq3/


Alternative isoforms detection pipelines 

Specialized for Pacbio

❏ SQANTI (reference genome, gff)
❏ ToFu (reference genome & limited de novo)
❏ TAPIS  (reference genome)
❏ IsoCon (de novo correction and detection of different transcripts 

at the base level, targeted data)

 Specialized for Nanopore

❏ FLAIR (reference genome)

Technology agnostic

❏ TALON (input = alignments to ref)
❏ MANDALORION
❏ TrackCluster (de novo) 111



Pipelines focused on quantification

❏ developed by Nanopore (based on alignment + Salmon) 
https://github.com/nanoporetech/pipeline-transcriptome-de

❏ LIQA (truncated reads treated using an EM algorithm)
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https://github.com/nanoporetech/pipeline-transcriptome-de


Application example
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Long reads miscellaneous

● specific spliced  alignment tools start to emerge (uLTRA, Sahlin et al. 2021)
● cleaning for spliced sites (with ref) TranscriptClean , FLAIR 
● reference-free correction might become a standard in the years to come 

(isONcorrect, Sahlin et al. 2021) (/!\ generally, do not use reference free 
correction methods tailored for genomic long reads)

● de novo assembly using short+long reads+ref: StringTie2
● a website that lists long reads tools: https://long-read-tools.org/table.html
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Next challenges with long reads

❏ guarantee full-length RNA or cDNA libraries  
❏ sequence all different RNAs (not only poly-A)
❏ allele-specific transcripts 
❏ acquire knowledge about 3' and 5' ends, polyA tails 

(homopolymers)
❏ new steps toward full de novo pipelines  
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What was not viewed during this session

-bacterial RNA

-genome-guided assembly

-metatranscriptomics

-single cell RNA

-tools specialized for ncRNAs, smallRNAs

-tools specialized for fusion transcripts

-transcript annotation (https://busco.ezlab.org/ for instance)

- ...

-up next: differential study (statistics for RNA-seq)
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