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General Introduction




Goals

This course main goals:

e An overview of RNA-seq data analysis

e |dentify the (key issues/points) (critical steps/parameters)




Warning !

This is NOT a course to train you as a bioinformatician, and this course will
NOT allow you to design an analysis pipeline set-up for your specific needs

This course WILL give you the basis information to understand and run a
generic RNA-seq analysis, its key steps and problematics, and how to interact
with bioinformaticians/bioanalysts that can analyze your RNA-seq datasets

We are
bioinformaticians
thats what we do

Sarple preparation

Gene identification
Novel genes
Discoveries...etc

. A \
hHp://biocomicals blogspot.com 4
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Sequencing: overview

fragmen-
tation
mRNA i
. Sequencer
sequence library
RT\,_> —
fragmen- a—
tation /
short sequence reads == ———

From: http://www2.fml.tuebingen.mpg.de/raetsch/members/research/transcriptomics.html




How to make cDNA libraries

- Extract RNA, convert to cDNA
- pass to next gen sequencer
- millions to billions of reads

make cDNA?

- Prime mRNA with random hexamers R6

- reverse transcriptase => cDNA first strand synthesis
- then second strand

=> jllumina cDNA library




How to sequence (1)

- polyA+
- Ribo-Zero (human, mouse, plants, bacteria, ...)

(ARN =90% of ARNr, 1-2% of ARNm)

- in prokaryotes: no polyA (= no capture), no splicing (= less complex)

- paired-end
- replicates




How to sequence (2)

_— 90% covered
s (0.9X)

!

depth: 3X




RNA-seq

-reads around 150-200 bp
-the number of detected transcripts increases with the sequencing depth
-the expression measure is more precise with more depth

-5 millions reads can be enough to detect genes mildly-highly expressed in
human

-100 millions must be preferred to detect lowly expressed genes (see for
instance saturation curves in “Differential expression in RNA-seq: a matter of
depth.” Genome Res. 2011)

- these numbers depends on the species/tissues (complex splicing...)

-keep replicates in mind
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There are plenty of protocols...

Meéthode Description Reéférence

RN AL Identification les ARN (el 5008]
Messagers.

miRNA-seq Identification les micro ARN. [Ruby et al., 2006

GRO-Seq (Global Run-On Sequencing), [Core et al., 2008]

Sélection et séquencage uniquement les

PRO-Seq (Precision Run-On ARNSs en cours de transcription par
: , ; [Kwak et al., 2013]
Sequencing) et I’ARN polymérase I1.
NET-Seq (Native elongation transcript
sequencing) [Churchman and Weissman, 2011]

Ribo-Seq (Ribosome profile sequencing) [Ingolia et al., 2009]

Identification les ARNs messagers en
et TRAP-Seq (Targeted purification of  cours de traduction.
polysomal mRNA sequencing)

RIP-Seq (RNA immunoprecipition

[Reynoso et al., 2015]

[Cloonan et al., 2008]

sequencing),

CLIP-Seq (Cross-linking and Détermination des régions d’ARN liées a

. I , S W [Chi et al., 2009]
immunoprecipitation sequencing), une protéine d’intérét.

PAR-CLIP (Photoactivatable-

ribonucleoside-enhanced cross-linking and [Hafner et al., 2010]

immunoprecipitation) et
iCLIP (individual-nucleotide

resolution CLIP) [Fhuppeces etal.,. 2014

Identification des régi d
ChIRP-Seq (Chromatine isolation by SIHLICAVION. (o TOROIG (I

oA génome qui interagissent avec [Chu et al., 2011]
RNA purification
S : IARN.
Etude des sites de clivage des
PARE:5eq (Pataidsialysis RNA. aids micro-ARNs ainsi que de la [German et al., 2009]

sequencing)

dégradation des ARNs.

from Clara Benoit Pilven’s PhD thesis
e
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Resources: genomes, transcriptomes, annotations

Common databases Specific databases

e.’ Ensembl

TACACAATCAGTTAGTT TCCACCGACAGTCCGUAG: CCATTOGACGGEC

ATGTACTTATCACATAGACATATATATA

MicroScope

7\, GENCODE
YRR

@ Saccharomyces
GENOME DATABASE

. l®
( National {}AMOEDaDB
Center for
' ? Bi(‘)techn'ology VectorBase
N C Bl | n t orm llt ion Bioinformatics Resource for Invertebrate Vectors of Human Pathogens

From Rachel Legendre (Institut Pasteur)
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FASTA/Q formats

FASTA format:
>61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTT
GTATTTGAAAAACACTTTCCGGCCAT

FASTQ format:

@61DFRAAXX100204:1:100:10494:3070/1
AAACAACAGGGCACATTGTCACTCTTGTATTTGAAAAACACTTTCCGGCCAT
+

ACCCCCCCCCCCCCCcccccrrreecccceBcrccccccccc@mcAcccccAa
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FASTA/Q formats

0 0 0 0 0 0 R R R
.......................... P O.0.0.0.0.0.0.0.0.0.0.0.0.0.0000.0.0.0.00000.000000000000000.0.0.00 G
............................... LLILIIIIIIIIIIIILIIIIIIIIIIIIIIIIIIIIIIITL . . .. ccccccvvvvnnnnnnns
................................. 3313333331333 I I IIIIIIII I v e v
LEEEEEELEEEEEEEEEEEEEEEEEEEEEEEEEEEE R v i i i s s s a i aaaiiaa
1"#$%8" () *+, - . /0123456789 ; <=>?@ABCDEFGHIJKLMNOPQRSTUWWXYZ[\]”~ "abcdefghijklmnopqrstuvwxyz{|}~
I I I I I I
33 59 64 73 104 126
A A A A A TN 26:..3 000000 40
-5 ey e 40
B O v v T 40
- SR T P P R P 41
B e o rw iz T 7w 7w 7w e e T T PO il e e e e 41
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)

with @=unused, l=unused, 2=Read Segment Quality Control Indicator (bold)
(Note: See discussion above).

L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)

Quality Error rate
10 10%
Qanger = —10 logyg p > 1=
40 0.01%
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What people do with their RNA-seq

-——-— . = o = = o W geneA
i = =n
RNA-Seq ——————————— L L, e W geneB
reads e W geneC
T - == — Lo o
,/ - -—-——- - \l
Genome mapping Transcriptome mapping Reference-free assembly
Align read to genome —=  Atribute reads to transcripts -— Create graph
- -—— . v
—- :-:"—::-."\— -» |-
-_-_ —-—- -~ o T — .\.
' ¥ L] ' ] Y '
Gene fusion Variant Transcript | Differential Clustering Assemble de novo variant
discovery calling assembly analysis ana lysis transcripts alling

From J. Audoux’s PhD thesis
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It's complicated

“““““ 1

b
| Gene fusion detection

IAFFAfFusionCatcher/
SOAPfuse/STAR-Fusion/
TopHat-Fusion

RNA-seq variation

\ analysis

1DP-fusion

Nature Communications 8, Article number: 59 (2017)

; X o = ~ _Ccs/error-free
T g anaseq

o e W
HISAT2 | N
Lang resdis (correctnd) p'
. ”l
STARIong
Transcript De novo
‘ s
\
~
Differential analysis
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Outcomes of RNA-seq studies

- gene annotation

- protein/function prediction

- gene/splicing quantification

- isoform discovery/fusion transcripts/IncCRNA...
- variant calling

- methylations

- RNA structures
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Cleaning - Preprocessing




Known biases in RNA-seq




Known biases in RNA-seq

Biological sample:

e presence of pre-mRNA
e 3'bias over-represented (RNA degradation)
e contaminations

Library preparation:
e DNAse fail

e pcr bias

e Vvariable insert size (smaller than sequencing length)
e reads with no inserts

Sequencing:

e quality drops at the end of reads
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Quality Control (QC)

Quality Control (QC) is important to:

e Check if your sample sequencing went well
e Know when you need to sequence again (sequencing platform QC fail)
e |dentify potential problems that can be fixed, or not

e Follow the impact of preprocessing steps

: Fa StQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqgc/)

+ M U |t| QC (https://multigc.info/) when comparing multiple datasets o



https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/

Practical: Quality Control (QC)

Open Galaxy

= Galaxy

PROJECT

GTN Practical: Reference-based RNA-seq data analysis
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Loss of base call accuracy with increasing
SequenCing CyCles Source: hitps://sequencing.gcfail.com

Quality scores across all bases (Sanger / lllumina 1.9 encoding)

38 " e e e e e e e e
e nnnn» “U”“DDH“ HH II[ I
34— \q_\\ i =

B
32 N L
30 Y U

28 L N

26 = L |
24 = B!

22 il N
20 N
18 o

16
14

12 il N

123456789 20-24 40-44 60-64 80-84 100-104 125-129 150-154 175-179 200-204 225-229 250-251
Position in read (bp)

Lo e ) T = <
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https://sequencing.qcfail.com

Position specific failures of flowcells

Quality per tile Quality per tile

21 23 25 27 29 33 4 3 45 9 1:2:83:4°5:6 £:8:9; 11230105 17, 19, 21 28 25 27 729::33/337:35; 37: 39 41 4% 45 47249051
Position in read (bp) Position In read (op)

Quality per tile Quality per tile

123456789 11 13 15 17 19 21 23 25 27 29 31 39 41 43 45 47 49 51
Position in read (bp)

123456789 14-15 38-39 46-47 54-55 62-63 70-71 78-79 86-87 94-95
Position in read (bp)

Source: 23
s —


https://sequencing.qcfail.com

Positional sequence bias in random primed
libraries Source: hittps://sequencing.actall.com

100

a0

80

70

60

50

40

30

20

10

Sequence content across all bases

Fosition in read (op) 5



https://sequencing.qcfail.com

Contamination with adapter dimers

|

g i

il
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https://sequencing.qcfail.com

Libraries contain technical duplication

Source: https://sequencing.qcfail.com

Percent of seqs remaining it deduplicated 2.58%

100
% Deduplicated segquences
% Total sequences

390

80

A
N A
o A

R [\

20

5 2 £ 4 S 6 ¥ 8 9 >10 =50 >100 500 >1k >S5k >10K
Sequence Duplication Level 27


https://sequencing.qcfail.com

GC content / Contamination ?

OC disinbuion over all sequentes

GL count por rend

Theoretic al Distrbuten
7000000 TReoretell Oninx

Q2468 11 M7V I IBMAL 45 40529555861 65 60 7209 TORI A WD 07 95 90
Mean OC comtent (W)
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GC content / Contamination ?

OC disinbuion over all sequentes

GL count por rend

Theoretic al Distrbuten
7000000 TReoretell Oninx

A7 95 3534l 40 52 95 SR 81 65 60 T2 0% TO I RS AU 97 9% 90
an OC comtert (%)
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Cleaning - Preprocessing

Cleaning has to be done in the reverse order that errors were generated.

1. Sequencing errors: quality trimming and filtering, Ns removal

2. Library preparation: adapters removal
3. Sample contamination: rRNA, mito, other contaminants

Note 1: step 1 (quality trimming) is not considered critical anymore and could
even hinder downstream tools/algorithms.

Note 2: If the reads are going to be aligned against a reference genome, this
whole process can be skipped or applied very lightly

30




Cleaning - Preprocessing

Final
dataset

.

Raw quality-c
dataset leaned
dataset

31




To map or not to map ?

32



With reference RNA-seq




W/ reference RNA-seq. For what purpose ?

Mainly:

e Differential expression
o between genes
o between transcripts/isoformes

e Transcriptome assembly
o variant calling
o isoforme discovery

34




What people do with their RNA-seq

[ Je—gp—
o = o = = o W geneA

i = =n
RNA-Seq -———— L T W geneB
reads W geneC

- o
- - e—— (RS o [e—
- -——— i ] S

-/

Genome mapping Transcriptome mapping

Reference-free assembly

: !

Align read to genome

— Atribute reads to transcripts
B = 2
—- - _\-.‘"“"- -. '-
- eam e - o + om
-_-_ —-—- - ® T e—
-
L
f i ' f '
Gene fusion Variant Transcript | Differential Clustering
discovery calling assembly analysis ana lysis

From J. Audoux’s PhD thesis

;

Create graph

%o

' '

Assemble
transcripts

de novo variant
alling
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RNA-seq w/ ref

raw/cleaned
Reference sequencing
genome dataset
sequence Refer'ence
transcriptome

Reference
genome
annotation
aligned
reads
Assembled
transcripts
Y
Gene Transcript Gene Gene Transcript
counts counts counts pseudo -counts pseudo-counts
36




The champion: Tuxedo Suite, “Classic” version

Bowtie
Extremely fast, general purpose short read aligner

TopHat

Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites

Cufflinks package

(o | s ) o | S . -

1
| Cufflinks i
1 Assembles transcripts :
O O S SR R SR SR
[ o e e s e ';
: Cuffcompare 1
1 Compares transcript assemblies to annotation :
.
|
: Cuffmerge 1
1 Merges two or more transcript assemblies :
D e e e e s e e s -
| T TTET T T e EEEEm 1
I Cuffdiff :
: Finds differentially expressed genes and transcripts |
1 Detects differential splicing and promoter use 1
e e e e e e e e e e e o)

CummeRbund

Plots abundance and differential
expression results from Cuffdiff

Nat Protoc. 2012;7(3):562-578. doi:10.1038/nprot.2012.016

Condition A Condition B

S ..

Mapped Mapped

reads N f_ reads
- .

Assembled Assembled

transcripts \ transcripts

Steps 3-4 Cuffmerge

Final
transcriptome
assembly

Mapped Mapped

reads ‘\ / reads
Step 5 Cuffdiff ‘

v

Differential
expression results

Steps 6-18 CummeRbund

Expression

plots 37




The champion: Tuxedo Suite, “Classic” version

Bowtie
Extremely fast, general purpose short read aligner

TopHat

Aligns RNA-Seq reads to the genome using Bowtie
Discovers splice sites

Step 1

Step 2

Cufflinks package

Steps 3—4

| Cufflinks
1 Assembles transcripts

: Cuffcompare
1 Compares transcript assemblies to anno

: Cuffmerge
1 Merges two or more tran
- Step 5
. 1
I Cuffdiff :
: Finds differentially expressed ge 1
1 Detects differential splicing and promoter use 1

1

Steps 6-18

CummeRbund
Plots abundance and differential
expression results from Cuffdiff

Nat Protoc. 2012;7(3):562-578. doi:10.1038/nprot.2012.016

Condition A Condition B

.

Mapped
N /— reads
-

Mapped
reads

Assembled
transcripts

\ Assembled

transcripts
Cuffmerge

Final
transcriptome
assembly

Cuffdiff

v

Differential
expression results

CummeRbund

Expression
plots

Mapped
reads

Mapped
reads
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The champion: Tuxedo Suite, New version
B e

P
I RNA-seq reads

HISAT/HISAT2: splice aware aligner

Steps 1 and 2

Step 3 StringTie

StringTie: Transcriptome assembler

Step 4 StringTie --merge

Ballgown: Differential expression analysis

viergead

Transcript
statistics

No transcript assembly/OR\

> <
> <

Step 6 String Tie -eB
[—
Read coverage
tables
A\ 4
Steps 7-21 Ballgown

Plots and
differential

expression tables 39

Nat Protoc. 2016;11(9):1650-1667. doi:10.1038/nprot.2016.095




Counting gene expressi

on from alignments

A — — —
| — e —— 1 | 1
Gene 1 (G1) Gene 2 (G2)
B
Approach to
handle Read distribution representation Counts
multireads
[T L — = _ = = R e G1: 10 reads
8 = = G2: 6 reads
Vo o o Tt | s e el e s s |
Count once e — S e —_— G1: 18 reads
peralignment | = — = = — — — m = e e e = = — G2: 14 reads
g | | e |
. — :m—— G1: 14 reads
Szlltutar.:lem i o (o S s T, ., (s — G2: 10 reads
Hually sy oy g | B p—— e T —
R based —_—
:ricl?:i jesle p—— B W G1: 15 reads
il - —— e E——— G2: 9 reads
mapped reads | e R 1 | EE—— g — |
. _ " (n)
Expectation- p— Ny —— = W G1: 15 reads
maximization ) o T ) (i (0 - - - — G2: 9 reads
g T =TT T—1. L T T=TT=T—T=T=1.3
Read coverage L, N, 5 &1s 15 pasts
based S 0 e e e e T B i I e e ) e
= = G2: 9 reads
methods e e e e 1 | pr— p————
“=—=_ | G1:10reads
Cluster =— — ~ — — — | G2:6reads
methods = e e [ e e e 1 Cluster G1/G2:
F _____ _I_r _ =S T N = ﬁ 8 reads

Deschamps-Francoeur, et al. 2020. doi:10.1016/j.csbj.2020.06.014
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Counting gene expression from alignments

Table 1
Computational strategies and methods that handle multi-mapped reads.

Tool Quantification  Input Strandedness  Count type Strategy Paired  Confidence level Focus
level can end
be specified
HTSeq-count Gene BAM Y Counts Ignore Y N Long RNA
STAR Gene Fastq Y Counts Ignore X N Long RNA
geneCounts
Cufflinks Transcript BAM Y RPKM Split equally, Rescue Y N Long RNA
featureCounts Gene BAM X Counts Ignore, count all, X N Long RNA
split equally
CoCo Gene BAM Y. Counts, CPM,  Rescue Y N Small RNA
TPM Long RNA
ERANGE Transcript BAM N RPKM Rescue X N Long RNA
EMASE Transcript BAM N Counts, TPM EM Y N Long RNA
ISOEM2 Both SAM Y FPKM, TPM EM Y Confidence Long RNA
intervals
Kallisto Transcript Fastq Y TPM EM Y Bootstrap values Long RNA
RSEM Both Fastq, Y Counts, TPM, EM Y 95% credibility Long RNA
BAM FPKM intervals
Salmon Transcript Fastq Y: Counts, TPM  EM Y Bootstrap values Long RNA
MMR N/A BAM ¥ N/A Read coverage Y N/A Long RNA
MuMRescuelLite Genomic loci Custom N Counts Read coverage N N Short
format sequence tags
Rcount Gene BAM Y Counts Read coverage N N Long RNA
ShortStack Gene Fastq, N Counts, RPM  Read coverage N N Small RNA
BAM
mmquant Gene BAM X: Counts Gene Clustering Y N Small RNA
Long RNA
SeqCluster Gene BAM N Counts Gene clustering N N Small RNA
Fuzzy method Gene Custom N Fuzzy counts  Fuzzy sets N Fuzzy counts Small RNA
format Long RNA
geneQC Gene SAM Y NA ML Y Mapping Small RNA
uncertainty level Long RNA
Deschamps-Francoeur, et al. 2020. doi:10.1016/j.csbj.2020.06.014 41



RNA-seq w/ ref

raw/cleaned
Reference sequencing
genome dataset
sequence Refer'ence
transcriptome

STAR HISAT2
Reference
genome
annotation
aligned Salmon
reads
featureCounts
Salmon
StringTie
Assembled
transcripts
Gene Transcript Gene Gene Transcript
counts counts counts pseudo -counts pseudo-counts
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Practical: Mapping and Quantification

Open Galaxy

= Galaxy

PROJECT

GTN Practical: Reference-based RNA-seq data analysis
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Recommended pipeline (as of Sept 2021)

e Transcriptome assembly: HISAT2 + StringTie (+ Ballgown ?)
e Transcript/Gene quantification with mapping: STAR + Salmon

e Mapping-less transcript quantification: Kallisto or Salmon
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De novo RNA-seq




De novo approaches

d  De novo methods are approaches that are free from a reference
for producing results

d Reference-based approaches have limitations as results depends
on the quality of the reference

d  Sometimes we don't even have a reference

3 De novo and reference-based are complementary

46




Why do we need de novo approaches

Aren’t references good enough?

Disease-associated transcripts
Genetic polymorphism in transcripts
de novo methods are helping creating tomorrow's references

L U0
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Home About Articles Submission Guidelines

Abstract Opinion Open Access

A W e e Bridging the gap between reference and real
e making of

Enter direct RNA-seq transcri ptomes

assembly

5 RO o Antonin Morillon and Daniel Gautheret &

comple'te reference Genome Biology 2019 20:112

Hagscagrone https://doi.org/10.1186/513059-019-1710-7 | © The Author(s). 2019
IgnOre non_reference Publlshed 3 June 2019

transcripts at your own

risks

The more novel and specific is your need, the more likely you need new
bioinformatics (and de novo)
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What can be done with de novo methods

A transcript assembly + quantification
d genetic polymorphism detection
d alternative transcript detection + quantification

49




The de novo assembly challenge




The de novo assembly challenge

transcript

LT r—
|
]
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The de novo assembly challenge




Assembly recap

Assembly is like taking a step after another in a maze

One step is a group of nucleotides

@ =)@
GACC TTA
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Assembly recap

Until you have a choice to make :

GCG
. .m
GACCTTA AATC
why does this happen? check the reads:
CTTAGCG
TTAAATC

and in the initial molecules, an exon is shared:

exona exonag
exon a exon C
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Greedy algorithms

local choices

GCG

) @
GAC CTTA

AATC




Greedy algorithms

local choices can lead to bad decisions

GCG

AATC -

_pAAAT..

" a #‘
GACCTTA

X




All vs all overlaps algorithms

Have a global view of the possibilities in the “maze”

|deal but... quadratic




de Bruijn graph assembly

With de Bruijn graphs we walk in the maze nucleotide by nucleotide:

@ =)
A

58




de Bruijn graph assembly

Your next step must correspond to the nucleotide that comes after in the
original transcript

O mh @ mnp @ ) - - -
A G A

Result: concatenation of the nucleotides (AGA...)

59




de Bruijn graph assembly

Q) @ = @ - - - @
A G A C\




de Bruijn graph assembly

Some dead ends and other bifurcations can be seen




de Bruijn graph assembly

Store the “maze” in a graph structure (de Bruijn graph)

d  helps with local choices
A cost efficient (RAM & runtime)

62




de Bruijn graph in practice: k-mers
k-mers: why don’t we use reads

ATCGCCAGA

reads (size=5)

k-mers (k=5)

result: ATCGCCA, CCAGA
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de Bruijn graph in practice: k-mers

k-mers (k=4)

>
=t
nnl
ololoje
0|nln]o
nlnla
>|>
)

result: ATCGCCAGA




de Bruijn graph in practice: k-mers

k-mers help bridging the assembly
they are key elements to work with the dBG
in practice implementations allow using several k sizes

tradeoff larger k: more conservative /smaller k: more
gaps filled in the graph

65




Path in the De Bruijn graph

De Bruijn graph

_ATGCC—TGCCF—GCCTT
_GATGC CCTTA

AGATG >CTTAT
TNMGATGA ACTTA

TSATGAC—TGACT—GACTT—"

assembly : a set of gap-less sequences extracted from paths covering
the graph (after some modifications to the graph...)
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Vocabulary: bubbles/bulges

AGATGCCTTAT AGATG—»GATGC—» ATGCC—TGCCT—GCCTT—> CCTTA—» CTTAT
_ATGCC—TGCCT—GCCTT,
AGATGCCTTAT ~7OATGC 1A,
AGATGACTTAT AGATG _CTTAT
~N
GATGA ACTTA

TSATGAC—TGACT—GACTT—"
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Vocabulary: tips/dead ends

reads

AGATGCCTTA
AGATGCTTTA
AGATGCCTTA
GATGCCTTAT
GATGCCTTAT

o CTTTA

7 GCTTT

_ATGCTT
_# ATGCT

AGATG—GATGT— ATGCC—TGCCT—GCCTT—CCTTA—> CTTAT
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An assembly generally is

- smaller than the reference,
- fragmented

¢ o
- missing reads create gaps

- repeats fragment assemblies
and reduce total size

repeat repeat

oo ves

\/”
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Contrasting genome and transcriptome assemblies

genome
-uniform coverage
-single contig per locus
-double stranded
-theory: one massive graph per chromosome
-practice: repeats aggregate, contigs
smaller than chromosomes
N~

&

transcriptome r%%
-exponentially distributed coverage A -9
-multiple contigs per locus % & ’\ﬁ:\%&
-strand specific &\JUXU\, V
- theory: thousands of small disjoint S #\%\h

graphs, one per gene §(\¢/ %""V Y\l"k
-practice: gene families, ALU & TE, 2972 %éj

low covered 5 S &’7%




Contrasting genome and transcriptome assemblies

Despite these differences, DNA-seq assembly methods apply:

- Construct a de Bruijn graph (same as DNA)
- Output contigs (same as DNA)
- Allow to re-use the same contig in many different transcripts (new part)
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Real instance graphs

(LC\) f‘”f

()(Yl? ".".-"-.i- = '.“""M"“"‘"‘"ﬂ

i

(’h G- ) } ;J"Q'WJQ.: i
M’R‘UJUIL o s

2 ; 5‘.\_ ;_ : O

gt

graph from shallow
covered Drosophila
dataset

zoomed-in bubbles
(+ tips)

gene family

Credit: ERABLE team (Lyon)
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There is no single solution for assembly...

Conclusions of the GAGE benchmark : in terms of assembly quality, there is no
single best assembler. Applies to RNA-seq.

Main tools:

-TransAbyss, Robertson et al. Nat. Met 2010 https://github.com/begsc/transabyss

-Bridger, Chang et al. Genome Biol. 2015 nttps://github.com/fmaguire/Bridger_Assembler

-SOAPdenovo-Trans, Xie et al. Bioinformatics 2014
https://qithub.com/aquaskyline/SOAPdenovo?2

-Trinity, Grabherr et al. Nat. Biotechnol. 2011
https://github.com/trinityrnaseq/trinityrnaseq/wiki

- rnaSPAdes, Bushmanov et al. GigaScience 2019 http:/cab.spbu.ru/software/spades/
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https://github.com/bcgsc/transabyss
https://github.com/aquaskyline/SOAPdenovo2
https://github.com/trinityrnaseq/trinityrnaseq/wiki
http://cab.spbu.ru/software/spades/

The main building blocks in theory

(optional) correct the reads (for instance BayesHammer in rnaSPAdes)
build a graph from the reads (remove k-mers seen once)

remove likely sequencing errors (tips)

remove known patterns (bubbles)

return simple paths (i.e. contigs), allow nodes to be used several times

s =
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Warning: what’s in the paper is different than
what’s in the implementation...

2. Assembly in SPAdes: An Outline Go to:

Below we outline the four stages of SPAdes, which deal with issues that are particularly troublesome in
SCS: sequencing errors; non-uniform coverage; insert size variation; and chimeric reads and bireads:

(1) Stage 1 (assembly graph construction) is addressed by every NGS assembler and is often
referred to as de Bruijn graph simplification (e.g., bulge/bubble removal in EULER/Velvet). We
propose a new approach to assembly graph construction that uses the multisized de Bruijn graph,
implements new bulge/tip removal algorithms, detects and removes chimeric reads, aggregates
biread information into distance histograms, and allows one to backtrack the performed graph

operations.

(2) Stage 2 (JEUTEERTENIET) derives accurate distance estimates between k-mers in the genome
(edges in the assembly graph) using joint analysis of distance histograms and paths in the assembly

graph.

joig ndwog
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Trinity assembler

- Inchworm de Bruijn graph construction, part 1
- Chrysalis de Bruijn graph construction, part 2

- Butterfly Graph traversal using reads, isoforms enumeration
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Trinity: detail

1-Inchworm

list all k-mers

|

‘ ‘ ‘ seed k-mers (high occurrence)

extend

“-‘ remove k-mers
Y ./ used from the list
el d o0o0o®
o000
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Trinity: detail
2-Chrysalis

find k-1 overlaps
between the contigs of the 1st step: build small
De Bruijn graphs

use read mapping information to separate clusters
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Trinity: detail

3-Butterfly
— ‘
e —

output read-coherent isoforms

0000000000000 0
0000000000000




Trinity output

>TRINITY_DN100@ c115 g5 il len=247 path=[31015:0-148 23018:149-246]
AATCTTTTTTGGTATTGGCAGTACTGTGCTCTGGGTAGTGATTAGGGCAAAAGAAGACAC
ACAATAAAGAACCAGGTGTTAGACGTCAGCAAGTCAAGGCCTTGGTTCTCAGCAGACAGA
AGACAGCCCTTCTCAATCCTCATCCCTTCCCTGAACAGACATGTCTTCTGCAAGCTTCTC
CAAGTCAGTTGTTCACAGGAACATCATCAGAATAAATTTGAAATTATGATTAGTATCTGA
TAAAGCA

-Trinity read cluster "TRINITY_DN1000_c115'

- gene 'g5'

- isoform 'i1"

-path=[31015:0-148 23018:149-246]") indicates the path traversed in the Trinity de Bruijn graph to construct that transcript
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Normalization effects on assembly (example of
Trinity)

From Brian

In silico normalization of reads Haas

el B
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Normalization effects on assembly (example of

Trinity)
Impact of Normalization on De novo Full-length
Transcript Reconstruction Haas

From Brian

a i Normalized b i Normalized
4,500 & pownsampled 9,000 . pownsampled
ﬁ 4,000 fﬂ 8,000 ..
§ 3,500 + @ 7,000 -
& 5
£ 3,000 ~ = 6,000 -
=
E-a 2,500 - E’ 5,000 ~
2 2
3 2,000 A 3 4,000
S 1,500 4 S 3,000 A
g 1,000 - é 2,000
Z 500 A Z 1,000 A
0 0
Total 30x 20x 10x 5x Total 100x 50x  30x 20x  10x 5x
(100%) (31%) (24%) (15%) (9.3%) (100%) (35%) (27%) (23%) (20%) (16%) (13%)
S. pombe RNA-seq Trinity assembly Mouse RNA-seq Trinity assembly

Largely retain full-length reconstruction, but use less RAM and assemble much faster.

Total 30x 20x 10x 5x Total 100x 50x 30x 20x 10x 5x 82
(100%) (31%) (24%) (15%) (9.3%) (100%) (35%) (27%) (23%) (20%) (16%) (13%)

S. pombe RNA-seq Trinity assembly Mouse RNA-seq Trinity assembly




Errors made by assemblers

Error type

Family
collapse

Chimerism

Unsupported
insertion

Incompleteness

Fragmentation

Local
misassembly

Redundancy

Transcripts

genelAl =
geneAB m—
geneAC crer———

n=3

s geneC

geneB m—
n=2

Assembly

T
jeeeebL-s————

Read evidence

bases in reads
Al CTOCAATCOCGK T |
T A TATTGCGGOGTA

€
g7 U [ U
go___

ATAGGGCGATCGGTG

coverage
)

no reads align to insertion

read pairs align off end of contig

s s
—_— — — S —
je= === ]

bndgmg read pairs

........

Smith-Unna et al. Genome Research, 2016
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Assembly quality assessment

In transcriptome assemblies

e N50 is not very useful.

o unreasonable isoform annotation for long transcripts drives higher N50
o very sensitive reconstruction for short lowly expressed transcripts leads to lower N50

95%-assembled isoforms statistics
reference-free evaluation must be preferred
read remapping

Main tools:

e rnaQuast http://cab.spbu.ru/software/rnaquast/
e Transrate http://hibberdlab.com/transrate/
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http://cab.spbu.ru/software/rnaquast/
http://hibberdlab.com/transrate/

c” ey

=== |FanNsRate

@ input data

assembled contigs paired-end reads

@ assign multimapping
reads

__’

' P *
faoe=—_ =i} 1]

collect contig score

components
MW coverage
—WV—V'\IWV'V’W— accuracy

bad/good

@ calculate contig scores

0.57

@ calculate assembly score

w— 0.01

057055 080
o.ssj 2, |_
——gg- |]=044 L S

assembly
score

quality completeness

Smith-Unna et al. Genome Research, 2016
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Visualization: Bandage

https://rrwick.github.io/Bandaage/

AU e



https://rrwick.github.io/Bandage/

Meta-practices

1- Read surveys, Twitter, blogs

2. Pick two assemblers

3. Run each assembler at least two times (different parameters)
4, Compare assemblies

5. If possible, visualize them

An assembly is not the absolute truth, it is a mostly complete, generally
fragmented and mostly accurate hypothesis

Currently, Trinity, RNASpades and TransAbyss could be pointed as the most

trustworthy/qualitative
(for known species. Not one tool for all issues).

87




Practical: Trinity assembly




Assembly does not output all variants

chri (p13.2) (MO M O B0 DN NGRS NN A izl I EE B § NN §4cED

| —

Scale 298 bases| !

1
chri: |  112e2ee88| 1126268166] 112026208 112626300| 112e2e408| 1126826508 112e28688| 112626704

Your Sedquence from Blat Search
Shorter_Fath_2

B e T e s SRS v |
Longer_Fath_2
Shorter_Fath_1

( ) shorter_FPath_35 [l

Longer_Fath_3 il

UCSC Genes Based on RefSed, UniFrot, GenBank, CCDS and Comparative Genomics
Clorf162 PP R e e e

W s 'gnc%ionpngge
: Shorter Pa

( b) _nght SN LP: Longer Path

R TP A P SN: Switching Node
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KISSPLICE

Goal: instead of assembling full-length transcripts, KISSPLICE (Sacomoto et al.
2012) focuses on assembling ONLY the bubbles that contain events and
enumerate the maximum of them

000“0‘\
Exon Skippin | — — b |
pping [a s \ /“.‘

Alternative “E—“ "‘m \

Intron retention

donor site e

Alternative « o
e @ —s b /
0000

acceptor site
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KISSPLICE: graph cleaning + local assembly

sequencing error for
highly expressed genes

1000 990 1000 990
||
40 80 40 80
example: discard if ratio is
<0.05

discarded rare events
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Variants in local assembly

local exon skipping

.
se q uencin g ATTCGT [T ACCTGA... . AAGACA

A_L B
upper path reads local assembly

in DBG

lower path

upper path

associated bubble

lower path
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KISSPLICE’s output

>bcc_89|Cycle _0|Type_1|upper path length 122|C1 0|C2 1|C3 2|C4 1]rank 0.55097
CCCTGATGGCCTCAGAGGAGGAGTAMATGT GGGGACCTAGAGGAGGAGCTGAAAATTGT TACCAACAACTTGAAATCCCTGGAGGCCCAGGCGGACAAGTATTCCACCAAAGAAGATAAATA
>bcc_89|Cycle_06|Type_1|lower_path_length_46|C1_0|C2_0|C3_2|C4_6|rank_0.55097
CCCTGATGGCCTCAGAGGAGGAGTATTCCACCAAAGAAGATAAATA |

upper_path
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Post-processings

What do | have?

What | can use

| have a reference genome

KisSplice2refgenome

| have no reference genome

KisSplice2refTranscriptome

differential analysis: kKissDE

Spliced events mapping results

Exon
Skipping

Multiple
Exon
Skipping

Intron
Retention

Number of Number of
alignment alignment
blocks blocks
Donnor
i = s == I -
I - m I
Alternative O
m -

Other mapping results

Number of
alignment
blocks

B -

. S
1 Splice site

> threshold

Insertion

I -

< threshold

for quantification only
see de-Kupl
Audoux et al. 2017




KISSPLICE case studies

A KisSplice FaRLine

Assembly-first  Mapping-first Discover splicing events:
ey appmm Benoit Pilven et al. 2018
Repeats
Not annotated
e —— Farline: mapping
FRoRLY o ’ events B found only by Kissplice (not

annotated)

C found only by Kissplice
(paralog)

D found only by mapping
(Alu repeat)

SK-N-SH RA (EDc2(Es)
Y=024

Discover SNPs in pooled RNA-seq: Lopez-Maestre et al. 2016 o




Practical: Kissplice




Long reads : the futtre present of transcriptomics

Long reads overview

Possibilities & pipelines
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Limitations of short reads

d  recent studies suggest that our reference transcriptomes miss
isoforms

3 in particular in the context of alternative splicing

[ de novo assembly of species with unknown/hardly known
transcriptomes is still a challenge

d  the mandatory cDNA step in short reads protocols implies bias
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Long reads technologies

d sequencing of long (>10kb) molecules is possible
O full RNAs!

d  with a higher (~1-5% to 14%) error rate

d error profile is different from SR: indels in
homopolymers

d some allow to sequence directly RNA (reduced bias,
epitranscriptomics)
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Long reads technologies

SMRT™bell
0‘.-.--“*‘.“-“.“-.““‘-‘-““-0 \ \ » 'T!
¥ — !
\ : -’

Basecalling

|Gua||t1 control -

& I v Quality trimming

® 111. adapters: Porechop, demultiplex: Porechop, geat
»n o

Q O

O ()]

& g

S &

from Shanika L. Amarasinghe et al. Genome Biol. 2020
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https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-1935-5#auth-Shanika_L_-Amarasinghe

Pacific Biosciences (Pacbio)

[ in the case of RNA, a fragment is read several times and a
consensus is computed

d  read length limited by the longevity of the polymerase

[ circular consensus sequence quality = f(fragment length, pol
longevity)

d 4 passes: 1% error (0.1% reached after 9 passes)

d bias for indels in homopolymers
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Pacific Biosciences (Pacbio)

d the protocol is better suited for studying isoform
identification only (not quantification)
3 initial overrepresentation of shorter molecules lead to
Size selection which introduces a bias
d  mitigation solutions still in progress
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Oxford Nanopore technologies (ONT)

no limit to read length

the fragment is read only once in the pore

read quality depends on the speed of the fragment through the
pore

d quality decreases in the late stages of sequencing

A error rate >5%

d bias for indels in homopolymers

L OO
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Oxford Nanopore technologies (ONT)

d 1D sequencing protocol : single pass of strands

d 1D? protocol: sequence the complementary strand
immediately after the forward strand and compute a
consensus

d accuracy over homopolymers is in progress (from R10

chemistry)
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Oxford Nanopore technologies (ONT)'s RNA direct

Methods based on reverse transcription:

d  Template switching and artifactual splicing
[ Loss of strandedness information

A Loss of base modifications

d  Propagation of error due to PCR

Direct RNA

d  no bias due to PCR

d  possible to study some RNA modifications

3 as of today not adequate for quantification (too much material
is required)
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Already prepared
cDNA Library? E

Interested in Poly-A =100 ng
modifications? enriched? sample?

Direct RNA Sequencing Kit PCR-cDNA Sequencing Kit Direct cDNA Sequencing Kit

Preparation time 115 mins Preparation time 165 mins Preparation time 275 mins
Input requirement 500 ng RNA (poly-A®) Input requirement 1 ng RNA (poly-A®) Input requirement 100 ng RNA (poly-A*)
RT required Optional RT required Yes RT required Yes
PCR required No PCR required Yes PCR required No
Read length Equal to RNA length Enriched for Enriched for
e full-length cDNA Raad lengih full-length cONA
Typical throughput @00
Typical throughput [ N N Typical throughput L N _Nel
Typical number of reads 1 million
Typical number of reads 7-12+ million Typical number of reads 5-10 million
Multiplexing options In development
Multiplexing options Yes Multiplexing options Yes
| Cumand Marapine - i .J;?‘Vgi —— ’ !;c’;‘;’qﬁ b ,‘

w @

material from Oxford Nanopore
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What has been studied with long reads so far

Near mature;

guantification of already known genes and isoforms
quantification of of novel isoforms from known genes ex

a detection and characterization of the different isoforms and
genes exon structure without quantification ( PacBio's
“Iso-Seq” method)

L L
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What has been studied with long reads so far

Exploratory:

d  RNA of paralogous genes (Dougherty et al., 2018, Chen et al.,
2017)

d  fusion transcripts (Nattestad et al., 2018).

d allele-specific expression (Tilgner et al., 2014), avelier et al.,

2015).
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Spirit of most analysis pipelines

PacBio raw
sequence reads

Remove adaplers
Remove artifacts

—— SE— reads
~ox NN ‘
[ sequenoereaas] Es—— comparison all vs all
Reads clustering

\J

[ Isoform clusters ]

«g ; clusters:
g o—— isoform detection
( L EE— I —
A Q — ; compute consensus

l°”"'“"f"‘°""9 report non redundant
polished transcript sequences

Final isoforms S
-

l Map to reference genome

E:':EE alignment to genome

porintindtrh ot (Minimap2, GraphMap2, GMAP...)
report genes/isoforms

adapted from Gordon et al. 2015 quantify
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Isoform detection: PacBio’s Iso-Seq3 +
ToFU/Cupcake

https://github.com/ylipacbio/lsoSeq3/

3

J
J
2

will tend to merge alternative transcripts (heavily depends on
the reference quality)

computationally expensive

tailored to Pachio reads only

scripts for exon-junction description and quantification

110



https://github.com/ylipacbio/IsoSeq3/

Alternative isoforms detection pipelines

Specialized for Pacbio

SQANTI (reference genome, gff)

ToFu (reference genome & limited de novo)

TAPIS (reference genome)

IsoCon (de novo correction and detection of different transcripts
at the base level, targeted data)

Ry My Ny

Specialized for Nanopore
l:l FLAIR (reference genome)
Technology agnostic

d  TALON (input = alignments to ref)
4 MANDALORION

A TrackCluster (de novo) 111



Pipelines focused on quantification

d developed by Nanopore (based on alignment + Salmon)
https://github.com/nanoporetech/pipeline-transcriptome-de
3  LIQA (truncated reads treated using an EM algorithm)

112



https://github.com/nanoporetech/pipeline-transcriptome-de

Application example

& frontiers
1IN Genetics
Front Genet. 2021; 12: 683408. PMCID: PMC8321248
Published online 2021 Jul 15. doi: 10.3389/fgene.2021.683408 PMID: 34335690

PacBio Iso-Seq Improves the Rainbow Trout Genome Annotation and
Identifies Alternative Splicing Associated With Economically
Important Phenotypes

Ali Ali,} Gary H. Thorgaard,? and Mohamed Salem!-"

Long-read cDNA sequencing identifies functional
pseudogenes in the human transcriptome

Robin-Lee Troskie, Yohaann Jafrani, Tim R. Mercer, Adam D. Ewing &, Geoffrey J. Faulkner & & Seth W.
Cheetham

Genome Biology 22, Article number: 146 (2021) | Cite this article
2795 Accesses | 2 Citations | 31 Altmetric | Metrics
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Long reads miscellaneous

e specific spliced alignment tools start to emerge (ULTRA, Sahlin et al. 2021)

e cleaning for spliced sites (with ref) TranscriptClean , FLAIR

e reference-free correction might become a standard in the years to come
(isONcorrect, Sahlin et al. 2021) (/!\ generally, do not use reference free
correction methods tailored for genomic long reads)

e de novo assembly using short+long reads+ref: StringTie2

e a website that lists long reads tools: https://long-read-tools.org/table.html
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Next challenges with long reads

Ry Wy Ny N

L

guarantee full-length RNA or cDNA libraries
sequence all different RNAs (not only poly-A)
allele-specific transcripts

acquire knowledge about 3' and 5' ends, polyA tails
(homopolymers)

new steps toward full de novo pipelines
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What was not viewed during this session

-bacterial RNA

-genome-guided assembly
-metatranscriptomics

-single cell RNA

-tools specialized for ncRNAs, smallRNAs

-tools specialized for fusion transcripts

-transcript annotation (https:/busco.ezlab.ora/ fOr instance)

-up next: differential study (statistics for RNA-seq)
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https://busco.ezlab.org/

